Isospin symmetry breaking in double-pion production in the region of $d^*(2380)$ and the scalar σ meson

Speaker: Tursunbayev Nurbek DLNP, JINR

Journal Club BLTP

- Introduction
- Formalism for the double-pion production reactions pn->d(ππ)0 in the region of d*(2380)
- Neutral and charged dipion production via the intermediate D12 and Δ Δ excitation
- Inclusion of the intermediate σ -meson production
- Energy dependence of the double-pion production cross sections
- Summary and outlook

Introduction The first attempt is made to provide a quantitative theoretical interpretation of the WASA at-COSY experimental data on the basic double-pion production reactions pn-> $d\pi 0\pi 0$ and pn-> $d\pi$ + π - in the energy region Tp = 1-1.3 GeV [P. Adlarson et al., Phys. Lett. B 721, 229 (2013)].

These measurements have revealed the significant isospin symmetry violation in the invariant-mass spectra in the near-threshold region, i.e., a suppression of the ABC enhancement by about 25% for charged dipion production as compared to neutral dipion production.

N.E. Booth, A. Abashian, and K.M. Crowe, Phys. Rev.Lett. 7, 35 (1961); A. Abashian, N.E. Booth, and K.M.Crowe, ibid. 5, 258 (1960). M.N. Platonova and V.I. Kukuin, Phys. Rev. C 87, 025202

Mass π[±]: 139.570 39(18) MeV/*c*^{2[1]} π^{0} : 134.9768(5) MeV/ $c^{2[1]}$

Formalism for the double-pion production reactions $pn-d(\pi\pi)0$ in the region of d*(2380)

$$\mathcal{M}_{\lambda_{p},\lambda_{n},\lambda_{3}}^{(D_{03})} = F_{pn\to D_{03}}(p)C_{1\lambda_{3}20}^{3\lambda_{3}}C_{\frac{1}{2}\lambda_{p}\frac{1}{2}\lambda_{n}}^{1\lambda_{3}}Y_{20}(\hat{p}),$$

$$\mathcal{M}_{\lambda_{3},\lambda_{d}}^{(\sigma)} = \frac{F_{D_{03}\to d\sigma}(q)F_{\sigma\to\pi\pi}(k)}{M_{\pi\pi}^{2} - m_{\sigma}^{2} + iM_{\pi\pi}\Gamma_{\sigma}(M_{\pi\pi}^{2})}C_{1\lambda_{d}2\mu}^{3\lambda_{3}}Y_{2\mu}(\hat{q}),$$

$$\mathcal{M}_{\lambda_{3},\lambda_{d}}^{(D_{12})} = \frac{F_{D_{03}\to D_{12}\pi_{1}}(k_{1})F_{D_{12}\to d\pi_{2}}(\kappa_{1})}{M_{d\pi_{2}}^{2} - M_{D_{12}}^{2} + iM_{d\pi_{2}}\Gamma_{D_{12}}(M_{d\pi_{2}}^{2})}$$

$$\times \sum_{\lambda_{2}}C_{2\lambda_{2}1\mu_{2}}^{3\lambda_{3}}C_{1\lambda_{d}1\mu_{1}}^{2\lambda_{2}}Y_{1\mu_{2}}(\hat{k}_{1})Y_{1\mu_{1}}(\hat{\kappa}_{1}) + (\pi_{1}\leftrightarrow\pi_{2}),$$

$$\mathcal{M}_{\lambda_3,\lambda_d}^{(\Delta\Delta)} = \int \frac{d^3\rho}{(2\pi)^3} \,\varphi_d(\rho) F_{D_{03}\to\Delta\Delta}(p_{\Delta\Delta})$$

FIG. 1: Diagrams of different mechanisms for double-pion production in the region of the \mathcal{D}_{03} (or $d^*(2380)$) resonance formation. The 3-momenta in the pair center-of-mass frames are indicated between the respective lines.

$$\mathcal{M}_{\lambda_p,\lambda_n,\lambda_d} = \frac{\sum\limits_{\lambda_3} \mathcal{M}_{\lambda_p,\lambda_n,\lambda_3}^{(D_{03})} \left[\mathcal{M}_{\lambda_3,\lambda_d}^{(\sigma)} + \mathcal{M}_{\lambda_3,\lambda_d}^{(D_{12})} + \mathcal{M}_{\lambda_3,\lambda_d}^{(\Delta\Delta)} \right]}{s - M_{D_{03}}^2 + i\sqrt{s}\Gamma_{D_{03}}(s)}$$

$$\times G_{\Delta}(M_{N_1\pi_1})G_{\Delta}(M_{N_2\pi_2})F_{\Delta\to N_1\pi_1}(\varkappa_1)F_{\Delta\to N_2\pi_2}(\varkappa_2)$$

$$\times \sum_{\lambda_{\Delta_1}\lambda_{N_1}} C^{3\lambda_3}_{\frac{3}{2}\lambda_{\Delta_1}\frac{3}{2}\lambda_{\Delta_2}} C^{\frac{3}{2}\lambda_{\Delta_1}}_{\frac{1}{2}\lambda_{N_1}1\mu_1} C^{\frac{3}{2}\lambda_{\Delta_2}}_{\frac{1}{2}\lambda_{N_2}1\mu_2} C^{1\lambda_d}_{\frac{1}{2}\lambda_{N_1}\frac{1}{2}\lambda_{N_2}}$$

$$\times Y_{1\mu_1}(\hat{\varkappa}_1)Y_{1\mu_2}(\hat{\varkappa}_2) + (\pi_1 \leftrightarrow \pi_2), \tag{5}$$

Neutral and charged dipion production via the intermediate D12 and $\Delta \Delta$ excitation

TABLE I: Parameters of resonances R and their decay channels $R \rightarrow a + b$. For the parameter p_0 , the given interval corresponds to all possible isospin channels.

R	M_R	$\Gamma_R^{(0)}$	ab	l	p_0	$\Gamma^{(0)}_{R \to ab}$	Λ_{ab}
	(MeV)	(MeV)			(MeV)	(MeV)	(GeV)
			np	2	730	9	0.35
\mathcal{D}_{03}	2376	77	σd	2	350	2	0.18
			$\pi \mathcal{D}_{12}$	1	173 - 176	31	0.12
\mathcal{D}_{12}	2150	110	πd	1	221 - 223	33	0.15
Δ	1232	117	πN	1	226 - 229	117	0.16
σ	303	126	$\pi\pi$	0	72 - 80	126	0.09

in the reactions $pn \rightarrow d\pi^0 \pi^0$ (multiplied by 2, solid line) and $pn \to d(\pi^+\pi^-)_0$ (dashed line) at $\sqrt{s} = 2.38$ GeV resulted from the $\mathcal{D}_{03} \to \mathcal{D}_{12}\pi$ decay in the intermediate state. The theoretical calculations are compared to the experimen- without account for the nucleon recoil in the $\Delta \rightarrow \pi N$ decay tal data on $2d\sigma/dM_{\pi^0\pi^0}$ (filled circles) and $d\sigma/dM_{\pi^+\pi^-}$ – $\frac{1}{2}d\sigma/dM_{\pi^+\pi^0}$ (open squares) from Ref. [9], as well as the data on $2d\sigma/dM_{\pi^0\pi^0}$ from Ref. [8] (open circles). The latter data have been multiplied by 0.45 (see Appendix). The model parameters are those listed in Tab. I, except for the parameter $\Gamma_{D_{03}\to D_{12}\pi}^{(0)}$, which has been adjusted to reproduce the experimental data at high invariant masses. Also shown are the pure phase-space distributions for $\pi^0 \pi^0$ (dash-dotted line) and $\pi^+\pi^-$ (dotted line) production normalized to the respective total cross sections.

FIG. 3: (Color online) The same as in Fig. 2, but for the FIG. 2: (Color online) The $\pi\pi$ invariant-mass distributions $\mathcal{D}_{03} \to \Delta\Delta$ decay in the intermediate state. The coupling constant $g_{\Delta\Delta}$ has been adjusted to reproduce the experimental data at high invariant masses. The thin dash-dot-dotted line shows the result of the calculation for $\pi^0 \pi^0$ production (as in Ref. [17]).

Inclusion of the intermediate σ -meson production

FIG. 6: (Color online) The $\pi\pi$ invariant-mass distributions in the reactions (a) $pn \to d\pi^0 \pi^0$ (multiplied by 2) and (b) $pn \to d(\pi^+\pi^-)_0$ at $\sqrt{s} = 2.38$ GeV calculated with the model parameters from Tab. I. Shown are the distributions resulted from the $\mathcal{D}_{03} \to \mathcal{D}_{12} + \pi$ decay (dash-dotted lines), the $\mathcal{D}_{03} \to \Delta + \Delta$ decay (dash-dot-dotted lines), the $\mathcal{D}_{03} \to d + \sigma$ decay (dashed lines), and the coherent sum of these three \mathcal{D}_{03} decay routes (solid lines). Upper dash-dotted lines (with short dashes) show the summed contribution of the $\mathcal{D}_{12} + \pi$ and $\Delta + \Delta$ excitation mechanisms. Dotted lines correspond to the pure phase-space distributions. Thin dashed and solid lines correspond to the σ -excitation mechanism and the total distributions with $\alpha = 0.23$ (see Eq. (15)). The theoretical calculations are compared to the experimental data on $2d\sigma/dM_{\pi^0\pi^0}$ (filled circles) and $d\sigma/dM_{\pi^+\pi^-} - \frac{1}{2}d\sigma/dM_{\pi^+\pi^0}$ (open squares) taken from Ref. [9].

Energy dependence of the double-pion production cross sections

FIG. 7: (Color online) The total cross sections in the reactions $pn \to d\pi^0 \pi^0$ (multiplied by 2) and $pn \to d(\pi^+\pi^-)_0$ as functions of the invariant energy \sqrt{s} . The solid and dashed lines correspond to the model calculations for $\pi^0 \pi^0$ and $\pi^+ \pi^$ production, respectively, including the $\mathcal{D}_{03} \to \mathcal{D}_{12} + \pi$, $\mathcal{D}_{03} \to \Delta + \Delta$, and $\mathcal{D}_{03} \to d + \sigma$ decay routes with parameters from Tab. 1 and $\alpha = 0.23$ (see Eq. (15)). The theoretical calculations are compared to the experimental data on $2\sigma(pn \to d\pi^0\pi^0)$ (filled circles) and $\sigma(pn \to d\pi^+\pi^-) - \frac{1}{2}\sigma(pp \to d\pi^+\pi^0)$ (crosses) obtained by an integration of the respective $M_{\pi\pi}$ distributions measured in Ref. [9]. Also shown are the total cross section data on $2\sigma(pn \to d\pi^0\pi^0)$ from Ref. [9] multiplied by a factor of 0.83 (open circles) and from Ref. [8] multiplied by a factor of 0.5 (open triangles) — see Appendix.

VI. SUMMARY AND OUTLOOK

We have shown that the observed suppression of the near-threshold enhancement (the so-called ABC effect) in the $\pi\pi$ invariant-mass spectrum in the reaction $pn \rightarrow pn$ $d\pi^+\pi^-$ compared to that in the reaction $pn \to d\pi^0\pi^0$ can be at least partially explained by the intermediate $\mathcal{D}_{03}(2380)$ (denoted also as $d^*(2380)$) dibaryon decay with the scalar σ -meson emission. The same mechanism is capable to explain the appearance of the ABC effect itself [18], provided the σ mass and width are shifted downwards to the values of about $m_{\sigma} = 290-320$ MeV and $\Gamma_{\sigma} = 75-150$ MeV due the partial chiral symmetry restoration in the excited \mathcal{D}_{03} dibaryon. Being a nearthreshold resonance, such a renormalized σ meson produces a cusp in the $\pi^0 \pi^0$ production cross section at the $\pi^+\pi^-$ threshold, thus giving the visible splitting between the neutral and charged dipion production cross sections in the near-threshold region. The free-space σ meson with the parameters $m_{\sigma} \simeq \Gamma_{\sigma} \simeq 500$ MeV produces a similar (though less prominent) cusp but a different shape of the $M_{\pi\pi}$ distribution, which peaks at the nominal σ mass.

THANK YOU!