FFD and FHCal comparison for flow analysis in the MPD experiment

Valerii Troshin, Parfenov Petr NRNU MEPhI Cross-PWG meeting in MPD 14.02.2023

FFD detector

The FFD consists of two sets of Cherenkov counters located at ± 140 cm from the nominal interaction point. Each set has 20 physical detectors with 4 read-out channels each. As a result, the total number of read-out channels is 2 sides 80 channels = 160 channels.

FFD QA

- To reduce impact of vertexZ, set cut |vtxZ|<50 cm and remove peak in vtxZ=0
- Number of photons in FFD is used as the weight

Dataset: Request 25 BiBi@9.2AGeV UrQMD 50m events

u_n , Q_n vectors formalism for flow measurements

• Unit vector of a particle u_n (centrality, pid, p_T , y):

$$u_n = e^{in\varphi} = \begin{cases} u_{n,x} \equiv x_n = \cos n\varphi \\ u_{n,y} \equiv y_n = \sin n\varphi \end{cases}$$

• Event flow vector Q_n (centrality):

$$Q_n = \sum_{k=1}^M \omega_n^k u_n^k \equiv |Q_n| e^{in\Psi_n} = \begin{cases} Q_{n,x} \equiv X_n = |Q_n| \cos n\Psi_n \\ Q_{n,y} \equiv Y_n = |Q_n| \sin n\Psi_n \end{cases}$$

- φ azimuthal angle of the produced particle
- ω weight of the Q_n vector (for example, $\omega=1$ for participant plane and $\omega=E$ for spectator plane)
- Ψ_n event plane angle

More information:

https://inspirehep.net/literature/757158

Request 25 FHCal & FFD event plane Resolution

2 sub event $R_{1,i} = \sqrt{\langle Q_{1,i}^N Q_{1,i}^S \rangle}, i = x,y$ $R_{1,i}^{True} = \langle Q_{1,i} \Psi_{RP} \rangle$

3 sub event $R_{1,i}^N = \sqrt{\frac{2\langle Q_{1,i}^NQ_{1,i}^S\rangle\langle Q_{1,i}^SQ_{1,i}^{TPC}\rangle}{\langle Q_{1,i}^NQ_{1,i}^{TPC}\rangle}}$

- FFD resolution are smaller than FHCal
- 2 and 3 sub event has good agreement with True Resolution

Directed flow of charged hadrons with FHCal and FFD

FHCal is better than FFD for directed flow measurements

Request 25 FHCal & FFD R₂

Ollitro extrapolation to obtain R₂

• FFD resolution is extremely small.

Elliptic flow of charged hadrons with FHCal and FFD

FFD need more statistics than FHCal

Results

- Event plane Resolution of FFD is much more smaller than FHCal resolution;
- Good agreement for 2 and 3 sub event methods
- FFD has extremely small Resolution for 2-nd harmonic
- FFD needs more statistics than FHCal for flow measurements
- FHCal are better than FFD for flow measurements.

Question:

• Which parameter will be available in the experiment?(number of photons, energy, something else)

BACKUP

Directed flow of charged hadrons with FHCal and FFD

FHCal are better than FFD for directed flow measurements

Effects of FFD cut on number of photons [180;290]

Request 26 FFD QA

Request 26 FHCal & FFD event plane Resolution

 In this data set we don't have an agreement with True Resolution for FFD

Request 26 FHCal & FFD event plane Resolution:vtxZ cut

- vtxZ cut: |vtxZ|< 50 cm
- Here we have better agreement than in case of full vtxZ