# FFD and FHCal comparison for flow analysis in the MPD experiment 

Valerii Troshin, Parfenov Petr NRNU MEPhl
Cross-PWG meeting in MPD 14.02.2023

## FFD detector



The FFD consists of two sets of Cherenkov counters located at $\pm 140 \mathrm{~cm}$ from the nominal interaction point. Each set has 20 physical detectors with 4 read-out channels each. As a result, the total number of read-out channels is 2 sides 80 channels $=160$ channels.

## FFD QA



- To reduce impact of vertexZ, set cut $|\mathrm{vtx} Z|<50 \mathrm{~cm}$ and remove peak in $\mathrm{vtxZ}=0$
- Number of photons in FFD is used as the weight

Dataset: Request 25 BiBi@9.2AGeV UrQMD 50m events

## $u_{n}, Q_{n}$ vectors formalism for flow measurements

- Unit vector of a particle $u_{n}$ (centrality, pid, $p_{T}, y$ ):

$$
u_{n}=e^{i n \varphi}=\left\{\begin{array}{l}
u_{n, x} \equiv x_{n}=\cos n \varphi \\
u_{n, y} \equiv y_{n}=\sin n \varphi
\end{array}\right.
$$

- Event flow vector $Q_{n}$ (centrality):

$$
Q_{n}=\sum_{k=1}^{M} \omega_{n}^{k} u_{n}^{k} \equiv\left|Q_{n}\right| e^{i n \Psi_{n}}=\left\{\begin{array}{l}
Q_{n, x} \equiv X_{n}=\left|Q_{n}\right| \cos n \Psi_{n} \\
Q_{n, y} \equiv Y_{n}=\left|Q_{n}\right| \sin n \Psi_{n}
\end{array}\right.
$$

- $\varphi$ - azimuthal angle of the produced particle
- $\omega$ - weight of the $Q_{n}$ vector (for example, $\omega=1$ for participant plane and $\omega=E$ for spectator plane)
- $\Psi_{n}$ - event plane angle

Request 25 FHCal \& FFD event plane Resolution


2 sub event
$R_{1, i}=\sqrt{\left\langle Q_{1, i}^{N} Q_{1, i}^{S}\right\rangle}, i=x, y$

$$
R_{1, i}^{T r u e}=\left\langle Q_{1, i} \Psi_{R P}\right\rangle
$$



$$
\begin{aligned}
& 3 \text { sub } \\
& \text { event }
\end{aligned} R_{1, i}^{N}=\sqrt{\frac{2\left\langle Q_{1, i}^{N} Q_{1, i}^{S}\right\rangle\left\langle Q_{1, i}^{S} Q_{1, i}^{T P C}\right\rangle}{\left\langle Q_{1, i}^{N} Q_{1, i}^{T P C}\right\rangle}}
$$

- FFD resolution are smaller than FHCal
- 2 and 3 sub event has good agreement with True Resolution


## Directed flow of charged hadrons with FHCal and FFD





FHCal is better than FFD for directed flow measurements


Ollitro extrapolation to obtain $\mathrm{R}_{2}$


- FFD resolution is extremely small.

Elliptic flow of charged hadrons with FHCal and FFD




FFD need more statistics than FHCal

## Results

- Event plane Resolution of FFD is much more smaller than FHCal resolution;
- Good agreement for 2 and 3 sub event methods
- FFD has extremely small Resolution for 2-nd harmonic
- FFD needs more statistics than FHCal for flow measurements
- FHCal are better than FFD for flow measurements


## Question:

- Which parameter will be available in the experiment?(number of photons, energy, something else)


## BACKUP




## Directed flow of charged hadrons with FHCal and FFD



FHCal are better than FFD for directed flow measurements


Effects of FFD cut on number of photons [180;290]



## Request 26 FFD QA

hZedAll

hNphFFD


Request 26 FHCal \& FFD event plane Resolution


- In this data set we don't have an agreement with True Resolution for FFD

Request 26 FHCal \& FFD event plane Resolution:vtxZ cut


- vtxZ cut: $|v t x Z|<50 \mathrm{~cm}$
- Here we have better agreement than in case of full vtxZ

