Λ^0 hyperons yields in 4.0 and 4.5 AGeV carbon-nucleus interactions (status report) Yury Stepanenko yystepanenko@gmail.com

10th Collaboration Meeting of the BM@N Experiment at the NICA Facility 14-19 May 2023

BM@N configuration in Run6

- Central tracker
 - One plane of a forward Si detector
 - 6 GEM stations
 - 5 GEM detectors (66x41 cm2)
 - 2 GEM detectors (163x45 cm2)
- Triggers: BD, BC1, BC2, TO, VETO
- Beam Ekin=4.0 and 4.5 GeV
 - Intensity 10⁵ per spill
 - Spill duration 2-2.5 sec.
- <u>Physics</u>: measure inelastic reactions C+A \rightarrow X
 - Targets: C, Al, Cu, Pb

target in the middle point

Analysis current status

- Main goal of current analysis cross-check with previous analysis 2020 (was performed by Gleb Pokatashkin)
- From previous analysis status:
 - Check GEM efficiencies for MC & Data
 - Apply efficiencies for MC simulation
 - Check residuals for MC & Data
 - Make corrections for residuals in Data & MC
 - Momentum smearing procedure for MC simulation
 - Make corrections for sigma dx/dy in MC simulation
- Analysis: compare distributions MC/Data for pt/momentum/etc.
- Measure cross-sections of the Λ^{0} 's hyperon (we are near finish)

GEM efficiencies comparison Data/MC (4.0GeV C+Cu) w/o applying effs to MC

GEM efficiencies comparison Data/MC (4.0GeV C+Cu) after applying effs to MC

GEM efficiencies C+Cu 4.0GeV SumEff over X

Red: Data; Blue: MC;

X, cm

GEM efficiencies C+Cu 4.0GeV SumEff over X

Red: Data; Blue: MC;

X, cm

Check residuals Data DX vs.X (4.0GeV CCu)

Check residuals MC DX vs.X (4.0GeV CCu)

Blue: before corrections Mean Dx vs x (DATA 4.0GeV C+Cu)

-80

0

-60

0

60

Red: after corrections

Blue: before corrections Red: after corrections Mean Dx vs x (MC 4.0GeV C+Cu)

Blue: before corrections Red: after corrections Mean Dx vs Momentum (DATA 4.0GeV C+Cu)

Blue: before corrections Red: after corrections Mean Dx vs Momentum (MC 4.0GeV C+Cu)

Sigma Dx vs Momentum (MC & Data 4.0GeV C+Cu)

Blue: MC

5

MC Smearing functions (Sigma Dx vs Momentum): $\sigma_{SMEAR} = \sqrt{\sigma_{DATA}^2 - \sigma_{MC}^2}$

Sigma Dx vs Momentum after smearing (DATA & MC 4.0GeV C+Cu)

Sigma Dx vs X comparison (DATA & MC 4.0GeV C+Cu)

Blue: DATA

Red: MC

Sigma dX vs. x ista==1 (DATA & MC) Sigma dX vs. x ista==2 (DATA & MC) Sigma dX vs. x ista==3 (DATA & MC) **0.18**□ 0.12 0.1 0.16 0.14 0.1 0.08 0.12 0.08 0.1 0.06 0.06 0.08 0.04 0.06 CC 0.04 0.04 0.02 Sigma dX, 0.02 0.02 0⊑⊥ _30 0<u>∟</u> _30 0<u>∟</u> _30 -20 20 30 20 -20 -10 10 20 -20 -10 0 10 -10 0 10 30 0 Sigma dX vs. x ista==4 (DATA & MC) Sigma dX vs. x ista==5 (DATA & MC) Sigma dX vs. x ista==6 (DATA & MC) **0.18** 0.14 0.14 0.16 0.12 0.12 0.14 ⊢∳∔, 0.1 0.1 0.12 0.1 0.08 0.08 ****** 0.08 0.06 0.06 0.06 0.04 0.04 ******* 0.04 0.02 0.02 0.02 0 <u>0</u>____ 17 ⁻²⁰ X, cm -20 -20 20 40 60 -60 20 40 60 **-60** 20 40 60 -40 0 **-40** -40 0 **– 60**

30

80

Sigma Dx vs X comparison after smearing (DATA & MC 4.0GeV C+Cu)

Sigma Dy vs Y comparison (DATA & MC 4.0GeV C+Cu)

Red: DATA Blue: MC

Red: DATA Blue: MC

Sigma Dy vs Y comparison after smearing (DATA & MC 4.0GeV C+Cu)

Events preselection cuts for control plots

- VETO==0
- BC2Hit==1, Mod==0
- BdHit>=2
- T0Hit==1, Mod==0
- Number tracks in event >= 2
- nHits on Track >=4
- Tracks from Primary Vertex >=2
- Nstrip < 440

C+Cu (4.0 GeV) Control plots (Pt & Momentum of all tracks) Red: Data: Blue: MC;

C+Cu (4.0 GeV) **Certain Control plots (Pt & Momentum of traks from Lambda decay)**

Control plots (Nhits for track)

C+Cu (4.0 GeV)

C+Cu (4.0 GeV) Control plots (DCA tracks to PrimVtx)

Red: Data; Blue: MC;

DCA negative trk from Lambda

C+Cu (4.0 GeV) Red: Data; Blue: MC; Control plots (Pt, Momentum & Mass of Lambda)

C+Cu (4.0 GeV) Control plots (DCA & PATH of Lambda) Red: Data; Blue: MC;

Control plots (Primary Vertex)

C+Cu (4.0 GeV) Red: Data; Blue: MC;

Apply additional cuts for Lambda

- Momentum proton track < 3.9
- Momentum pion track > 0.3
- Lambda path > 2.5
- Lambda DCA < 1.0

C+Cu (4.0 GeV) All cuts applied (Pt & Momentum of all tracks) Red: Data; Blue: MC;

C+Cu (4.0 GeV) All cuts applied (Pt, Momentum & Mass of Lambda)

C+Cu (4.0 GeV) All cuts applied (DCA & PATH of Lambda) Red: Data; Blue: MC;

C+Cu (4.0 GeV) All cuts applied (Primary Vertex) Red: Data; Blue: MC;

pt & y intervals hists numbering for Lambda signal extraction

D+-1 05				
Ft-1.03	h14	h24	h34	h44
	h13	h23	h33	h43
pt	h12	h22	h32	h42
	h11	h21	h31	h41
Pt=0.1				
	y=1.2		У	

MC statistics were increased by factor x10

C+Cu 4.0GeV

BG = A * x + b

 $BG = N * (x - M_0)^A *$ $* \exp(-B * (x - M_0))$

FUN	FUN lin		
183 <u>+</u> 55	202 <u>+</u> 54		
130 <u>+</u> 59	145 <u>+</u> 59		
86 <u>+</u> 52	125 <u>+</u> 52		
94 <u>+</u> 32	139±32		

C+Cu 4.0GeV

BG = A * x + b

 $BG = N * (x - M_0)^A *$ $* \exp(-B * (x - M_0))$

FUN	FUN lin	
4923 <u>+</u> 298	7119±294	
5864±221	6481±219	
2417 <u>+</u> 121	2614±120	
71 <u>+</u> 37	89 <u>+</u> 37	

The inclusive cross section σ_A and yield Y_A of A hyperon production in C+C, C+Al, C+Cu, C+Pb interactions are calculated in bins of $y(p_T)$ according to the formulae: $\sigma_A(y) = \sum_V \left[N_{rec}^A(y, p_T) / (\varepsilon_{rec}(y, p_T) \cdot \varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L) \right] \qquad Y_A(y) = \sigma_A(y) / \sigma_{inel}$

 $\sigma_{\Lambda}(y) = \sum p_T \left[N_{rec}^{\Lambda}(y, p_T) / (\varepsilon_{rec}^{R}(y, p_T)) \varepsilon_{trig}^{R} \varepsilon_{pileup}^{R}(L) \right] = \sum p_T \left[N_{rec}^{\Lambda}(y, p_T) / (\varepsilon_{rec}^{R}(y, p_T)) \varepsilon_{trig}^{R} \varepsilon_{pileup}^{R}(L) \right] = Y_{\Lambda}(p_T) = \sigma_{\Lambda}(p_T) / \sigma_{inel}$

Yields total 4.0 GeV							
Target	C+C	C+AI	C+Cu	C+Pb			
Previous analysis	0,0164 <u>+</u> 0,0013	0,0286 <u>+</u> 0,0025	0,0307±0,0020	0,0366 <u>+</u> 0,0048			
New analysis	0,0101 <u>+</u> 0,0028(-38%)	0,0322±0,0069 (+12%)	0,0315±0,0064(+2.5%)	0,0412±0,0061 (+13%)			
Prelimina							
Yields total 4.5 GeV							
Target	C+C	C+AI	C+Cu	C+Pb			
Previous analysis	0,0224±0,0026	0,0355±0,0034	0,0406±0,0032	0,040±0,0057			
New analysis	0,0115 <u>+</u> 0,0036(-48%)	0,024 <u>+</u> 0,0053(-32%)	0,0337±0,0067(-17%)	0,0333 <u>+</u> 0,0108(-18%)			

Next...

- More accurate yields calculations
 - In some cells (4x4) low reconstruction efficiencies due low statistics
 - Extrapolate numbers from MC model
- Another way of yields calculations for cross-check
 - Divide y, pt on more narrowed regions (8x8 cells);
 - Extract MC reconstructed signal (fit procedure)
 - Determinate: $\omega_i = MC_{rec_i}/MC_{gen_i}$ for each cell
 - Fill mass histograms for DATA with ω_i
 - Sum data histograms over pt & y (4 hists for pt & 4 hists for y)
 - Fit histograms, extract numbers for yields calculation In progress now (will be performed by Ksenia Alishina)

Thank you for your attention!

