ToF-700 π^{\pm} and \mathbf{K}^{\pm} analysis

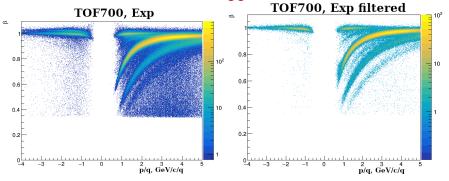
K.Mashitsin, S.Merts, S.Nemnyugin

SPbU & JINR

15/05/2023

K. Mashitsin (SPbU)

- ${\scriptstyle \circ \ }$ Identifying $\pi^{\pm}{\rm ,}$ ${\rm K}^{\pm}$
- ${\, {\circ}\, }$ Estimation of the π , K meson production cross section



- Previous results
- Changes in track selection algorithm
- Efficiency corrections for TOF700 and DCH
- Evaluation of trigger performance
- Background subtraction by the linear fit
- Summary

Algorithms for filtering experimental data have been implemented

Statistics were collected for the argon beam on all targets and triggers.

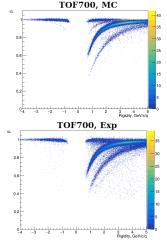
• Realistic effects have been added to the modeling process

- Angle of beam
- Gaussian smearing vertex
- Lorentz shifts
- Dead strips, hits
- Accounting for dynamic matching ranges and hit corrections

Input data

Run: 7 and Tracking: CellAuto

Monte Carlo


BM@N

- Generator: DCM-SMM
- System: Ar + Cu, C, Al, Pb, Sn
- Energy: 3.2 AGeV
- Lorentz Shifts
- Dead strips, hits

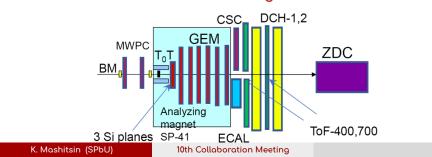
Exp data

- System: Ar + Cu, C, Al, Pb, Sn
- Energy: 3.2 AGeV

Filtering experimental data

Selection criteria for reliable experimental tracks:

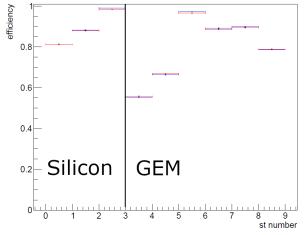
Vertex in range


BM@N

 $\mathsf{V}_{\mathsf{X}} \in (-2,4) \texttt{cm}; \mathsf{V}_{\mathsf{Y}} \in (-6,-1)\texttt{cm}; \mathsf{V}_{\mathsf{Z}} \in (-5,5)\texttt{cm}.$

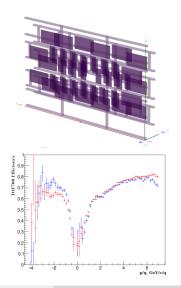
• Minimum 4 hits in GEM.

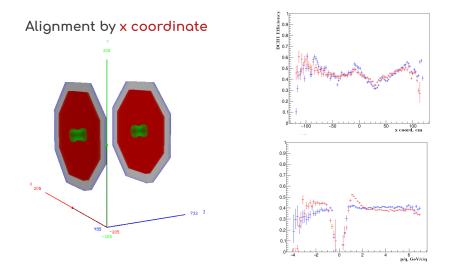
No longer required to have at least 2 hits of Sil.


• The track is confirmed in the first drift chamber For the TOF700 detector, we associate the track with the hit, and for the DCH1 with the track segment

6/20

Station skip + hits disable + station acceptance




TOF700 Efficiency correction

TOF700 eff constants: by modules

- From the exp data get the efficiency of each module: Mod_{eff}
- At the stage of creating hits, choose a random uniformly distributed number (Mod_{rnd})
- If Mod_{rnd} > Mod_{eff}, then the hit for the given module is not recorded

DCH Efficiency correction

BM@N

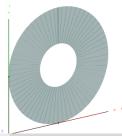
$$\sigma_{\pi^{\pm}}(\mathbf{y}, \mathbf{p}_{t}) = \frac{\mathsf{N}_{\mathsf{rec}}^{\pi^{\pm}}(\mathbf{y}, \mathbf{p}_{t})}{\varepsilon_{\mathsf{rec}}(\mathbf{y}, \mathbf{p}_{t})\varepsilon_{\mathsf{trig}}\mathsf{L}}$$

where

- y is the rapidity
- $\bullet \ \rho_t$ is the transverse momentum
- $N^{\pi^{\pm}}$ is the number of reconstructed π^{\pm}
- $\varepsilon_{\rm rec}$ is the efficiency of the π^{\pm} reconstruction
- ε_{trig} is the trigger efficiency
- L is the <mark>luminosity</mark>

$$\label{eq:bd} \epsilon(\mathsf{BD} > \mathsf{k}) = \frac{\mathsf{N}_{\pi}(\mathsf{BD} > \mathsf{k}, \mathsf{FD} > \mathsf{N}, \mathsf{N}_{tr})}{\mathsf{N}_{\pi}(\mathsf{FD} > \mathsf{N}, \mathsf{N}_{tr})},$$

where


- k = 1, 2, 3 reading from digits
- ${\ensuremath{\, \circ }}$ N_{tr} is the number of tracks in primary vertex
- ${\ensuremath{\, \bullet }}$ FD > N is the trigger condition for writing data
- N_{π} is the number of pions

BD (barrel detector)

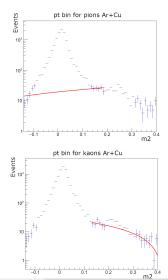
FD (forward silicon detector)

• Momentum:

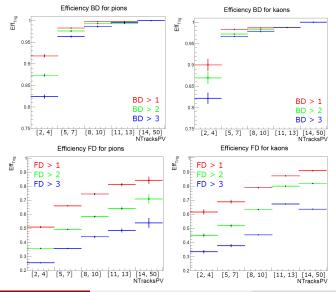
 $-2.6 < \rho/q < 2.4$

• Parameters for π :

- $-0.1 < m^2 < 0.15$
- $\bullet \ 0.10 < \rho_t < 0.80$
- 1.5 < y < 3.2

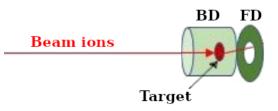

• Parameters for K:

- $0.15 < m^2 < 0.35$
- $0.10 < \rho_t < 0.70$
- 1.0 < y < 2.0



Background subtraction by the linear fit

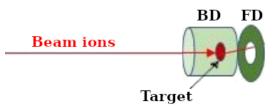
- Select reliable tracks
- \bullet Restrict by ρ_t and y
- ${\ensuremath{\, \circ }}$ For each ρ_t bin save all m^2
- Select a some range to the left of m²_{min} and to the right of m²_{max}
- If there are more than 10 events in the mass range and at least 2 events on the left and right, perform a linear fit
- Subtract background from the signal



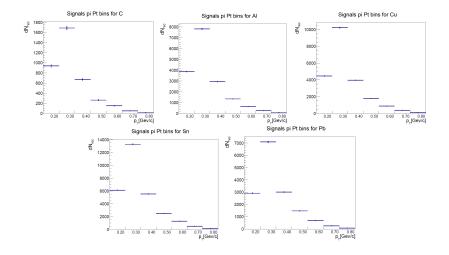
K. Mashitsin (SPbU)

Mean BD trigger efficiency

π	С		Cu		
BD >1	0.72	0.94	0.97	0.99	0.99
BD >2	0.57	0.90	0.96	0.99	0.99
BD >3	0.44	0.85	0.94	0.98	0.98
K	С				
K BD >1	C 0.50	Al 0.90	Cu 0.95	Sn 0.99	РЬ 0.99
	T			<u> </u>	

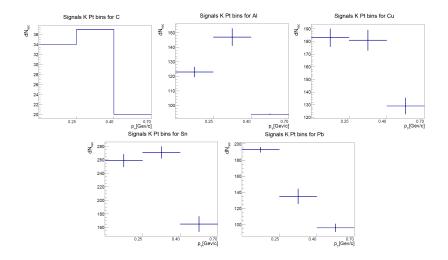


K. Mashitsin (SPbU)



Mean FD trigger efficiency

π	С	Al	Cu	Sn	РЬ
FD >1	0.37	0.49	0.63	0.73	0.80
FD >2	0.23	0.31	0.46	0.58	0.69
FD >3	0.15	0.19	0.33	0.44	0.58
К	С	Al	Cu	Sn	РЬ
FD >1	0.51	0.66	0.86	0.76	0.86
FD >2	0.29	0.44	0.87	0.63	0.73
FD >3	0.16	0.30	0.63	0.43	0.60

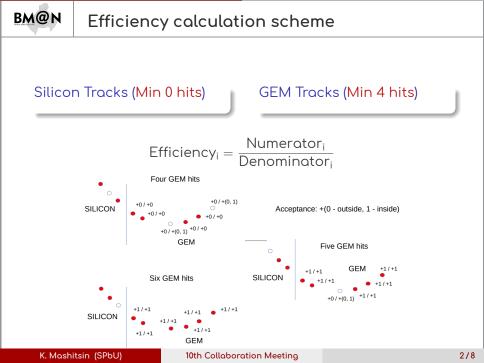


Number of reconstructed π^\pm in ρ_t bins

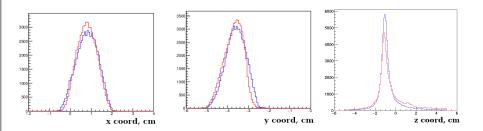
BM@N

Number of reconstructed K^{\pm} in ρ_t bins

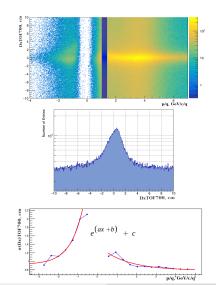
BM@N

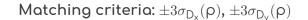


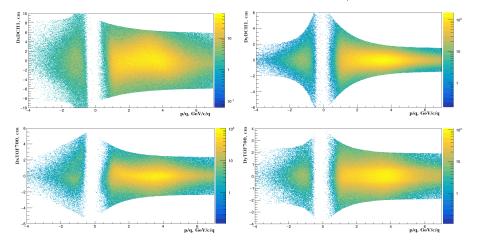
- The efficiency inside and after the magnet are in good agreement.
- The efficiency of triggers was evaluated.
- The distributions of the experimental signals were cleared from the background


Thank you for the attention!

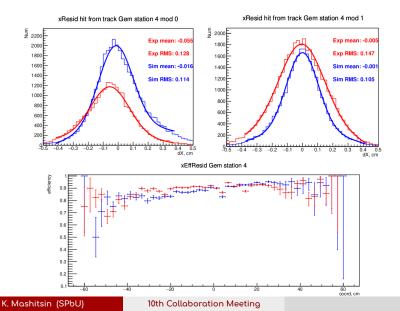
K. Mashitsin (SPbU)

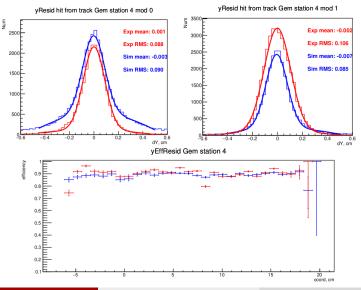




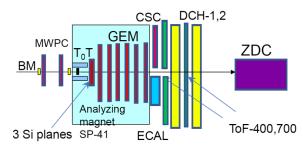

Alignment algorithm: momentum corrections

- Propagate each track to the detector plane
- Create histograms with all track-to-hit(track) connections from momentum
- Every 350 MeV, project the residuals onto the Y plane
- Fit distibutions by gaus + ρ ol2 to get $\mu_{D_x}(\rho/q)$ and $\sigma_{D_x}(\rho/q)$
- Fit all μ_{Dx} and σ_{Dx} by exponential function




BM@N

GEM residuals: x coordinate



K. Mashitsin (SPbU)

- Let station i is station where we want to calculate efficiency
- Propagate SIL -> GEM -> DCH1 -> TOF700 -> DCH1 -> GEM
 -> SIL -> Vertex by KF with parameters update (skip station i)
- Propagate Vertex -> SIL -> GEM by KF with getting residuals and calculating efficiencies

