

Analysis of the Beam Trackers operation in the Xe run

Danil Chemezov on behalf of Forward Silicon Tracker team

10th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 15-19 May 2023

Beam Tracker

FEE

- **Physical purpose**: determination of the reaction plane, refinement of the vertex definition, beam profilometry
- detector: DSSD, 128×128 strips, pitch p+ / n+ strips 0.47 mm, thickness 175 μm, active area 61×61 mm²
- FEE: based on VATA64HDR16.2 (64 ch, dynamic range: -20 pC ÷ +50 pC; 50, 100, 150, 300 ns programmable shaping time)

Energy deposition of Xe in 175 µm silicon

Xe 4 AGeV ions deposited energy

- Using the GEANT4 framework, a simulation of Xenon energy loss of 4 AGeV in 175 µm silicon was performed.
- The $\Delta E = 245$ MeV/175 μm (Si), which • corresponds to a charge of **10.9 pC**, which falls within the dynamic range of VATA64HDR16.2
- Remind: $(Q_{m i p/175 \mu m Si} = 2.33 \times 10^{-3} \text{ pC})$ ٠

Station 1 Mean: 2137 ch.ADC 1 ch.ADC = 115 keV

P+ side cluster amplitude distributions, run 8270

The figure above shows the distribution of cluster amplitudes at station 0 with channels 0-63 (first ASIC). The distribution of cluster amplitudes is well described by the Gaussian function, and the mean value was obtained from the fitting results.

NIEL simulation of $^{124}\mbox{Xe}$ in 175 μm silicon

BT Si detectors were installed in the most severe radiation conditions - in a direct beam of heavy xenon ions. Non-ionizing energy losses (NIEL) are used as a measure of the degree of radiation damage.

Using GEANT4 with the SR-NIEL library, NIEL of Xe in 175 μm Si values were obtained.

NIEL from 1 MeV neutron in Si (ASTM Standard E722-19):

$$NIEL_n = 0.0016MeV \cdot cm^2/g$$

NIEL from 4 A*GeV Xe:

$$NIEL_{Xe} = 0.458MeV \cdot cm^2/g$$

Hardness factor of 4A*GeV Xe:

$$NIEL_{Xe}/NIEL_n \approx 276 \Rightarrow \Phi_n = \Phi_{Xe} \cdot 276$$

1.80 mkA 1.60 mkA

1.40 mk4 1.20 mkA

0.800 mkA 0.600 mkA

0.400 mkA 0.200 mkA

Increasing the dark current of beam trackers during Xe run

FSD HV current

run start, $< I >= 0.761 \mu A; t = +22.5^{\circ}C$

Method of measuring the fluence using silicon detectors

	I _{d0} , μΑ/+20 V/+22.5°C 04.12.2022 (run start)	I _{d(s)} , μΑ/+20 V/+26.8°C 2.02.2023 (run stop)	ΔI = I _{d(s)} ⁻ I _{d0} ,μA (at +20 °C)
BT1	0.965	12.7	6.3
BT2	0.692	12.5	6.4
BT3	0.626	12.9	6.7
Mean	0.761	12.7	6.44

Fluence can be estimated by the empirical formula:

 $\Delta I = \alpha \cdot \Phi_n \cdot V_{det}$, $\alpha = 3 \cdot 10^{-17} \ A \cdot cm^{-1}, V_{det} = 61 \cdot 61 \cdot 0.175 \ mm^3$

, α - bulk radiation damage constant, Φ_n is the equivalent fluence of 1 MeV neutrons, related to the fluence of xenon by the relation:

$$\Phi_n = k \cdot \Phi_{Xe}$$

, k - hardness factor of 4 A*GeV Xe, k =276 Using the calculated hardness factor and experimentally obtained increases of currents we obtain:

Based on the obtained fluence, we can estimate the number of xenon nuclei that passed through the detectors during the run:

$$N_{Xe} = \Phi_{Xe} \cdot S_{det}$$

Fluence ¹²⁸Xe, cm⁻² Fluence of 1 MeV Number of xenon neutrons, cm⁻² nuclei BT1 $3.21 \cdot 10^{11}$ $1.16 \cdot 10^9$ 4.33·10¹⁰ BT2 $3.27 \cdot 10^{11}$ 1.18·10⁹ 4.41·10¹⁰ 3.41·10¹¹ 4.60·10¹⁰ BT3 $1.23 \cdot 10^9$ $S_{det} = 37.2 \ cm^2$ Mean 3.30·10¹¹ $1.19 \cdot 10^9$ $4.44 \cdot 10^{10}$

Dark current for each strip after Xe run

Y [cm]

Y [cm]

Y [cm]

 $I_{dark total}$ =7,1 µA

 $I_{dark total}$ =7,0 µA

I_{dark total}=7,2 μA

run 6705, 13.12.2022

Conclusion

Results of work in run 8:

Requires more fine-tuning of ASICs operating modes to reduce the effects of time overlap

Plans

- Adjusting the optimal modes of operation of the ASICs,
- Testing beamzone on detectors on the alpha radiation source (²²⁶Ra, E=4.87 MeV) in order to assess the influence of radiation damage on the detectors sensitivity.

Thank you for your attention!

Backup

Energy deposition of Xe in 175 μm silicon

ЦНЕР ЛФВЭ

P+ side cluster amplitude distributions, run 8270

Amplitudes of clusters station 1, run 8270 Strips 0 - 63

ADC channels

al al

والمطالب والم