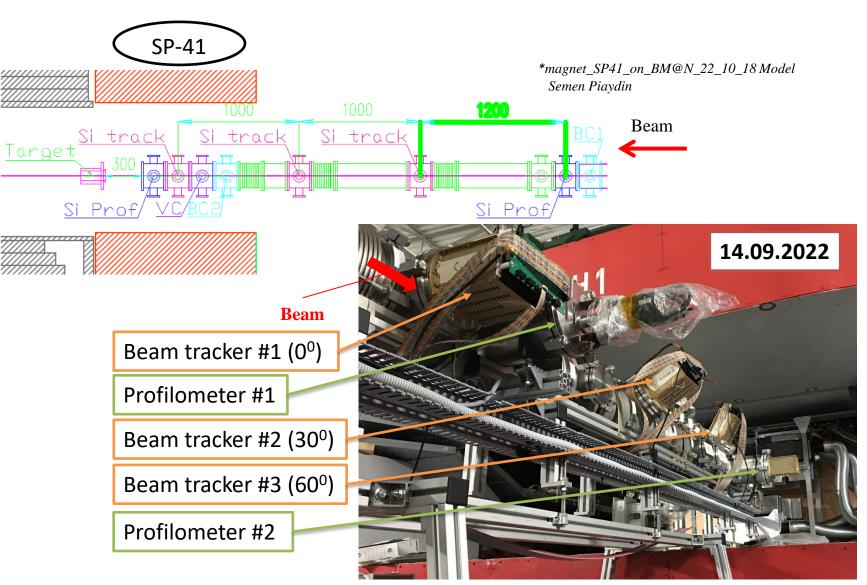


Analysis of the operation of coordinate systems based on Si-detectors, information on radiation damage

Zamyatin N., on behalf of Silicon tracker team

10th Collaboration Meeting of the BM@N, $15 \div 19$ May 2023


Beam Silicon detectors, Multiplicity trigger and Forward Silicon Tracker on Xe - run

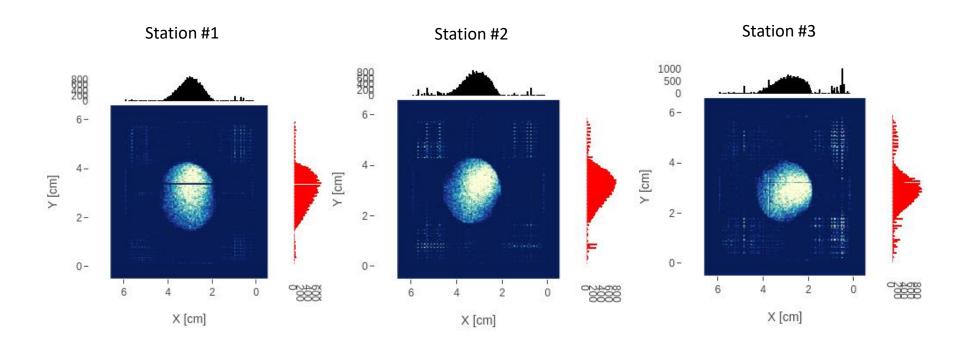
Forward Silicon Tracker (four XY planes)	Multiplicity trigger (64-radial strips plane)	Target	Beam tracker (three station)	Beam profilometer (two station)		
	Direction of Ion Beam					

10th Collaboration Meeting of the BM@N, $15 \div 19$ May 2023

Position of beam Si-detectors inside of beam pipe before target

10th Collaboration Meeting of the BM@N, $15 \div 19$ May 2023

1. Si-beam tracker (3 station):


- three two-coordinates station based on DSSD (128x128) orthogonal strips, silicon thickness 175 μ m (0.0019 X₀), fast FEE (t_p=50;100;150;300ns);

- three coordinate stations, each rotated by angle of 30° relative to the previous one;

- all stations worked in the run normally, as planed;

<u>Problems in the session:</u> we did not fully check the ASICs modes before the run;

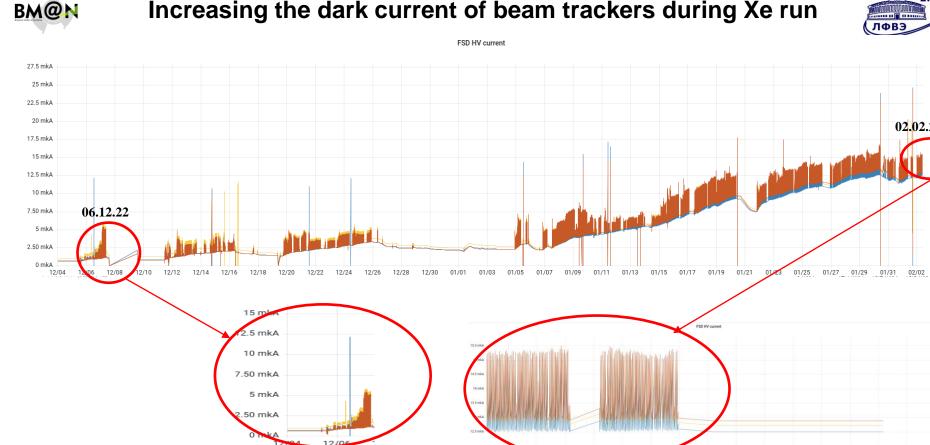

- the goal is to minimize the effect pile-up at a beam intensity of 10⁶ ions/spill (the signal duration on the base is no more than 600 ns)

Fig.3. X, Y – profiles of Xe-beam upstream the target. Session BM@N 2022 г. – 2023 г., RUN 6705 (13.12.2022), t = 30°

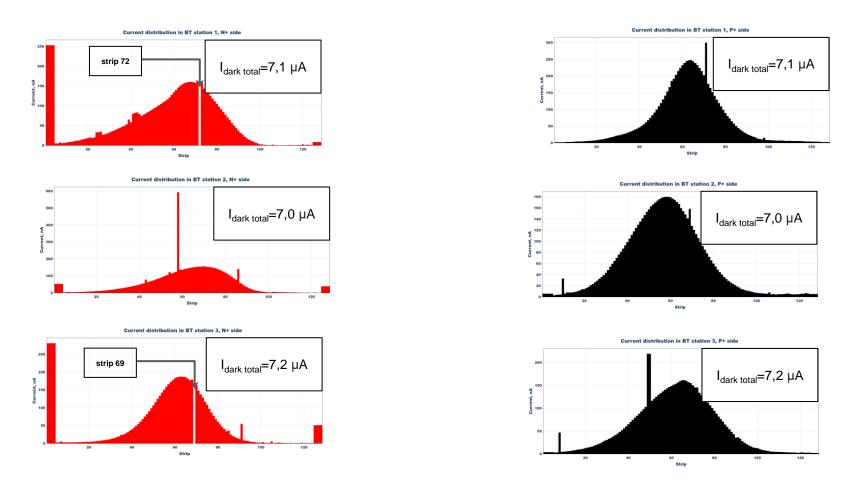
10th Collaboration Meeting of the BM@N,

15 ÷ 19 May 2023

Increasing the dark current of beam trackers during Xe run

LHEP ЛФВЭ

02.02.23


run start, $< I >= 0.761 \mu A$; $t = +22.5^{\circ}C$

run stop, $< I >= 12.7 \mu A$; $t = +26.8^{\circ}C$

Dark current per strip after Xe run

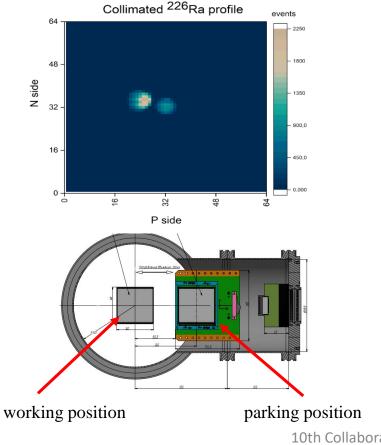
S_{det} = 37,2cm², (d=175mkm) t = +22°

Method of measuring the fluence using silicon detectors

	I _{d0} , μA/+20 V/+22.5°C 04.12.2022 (run start)	I _{d(s)} , μΑ/+20 V/+26.8°C 2.02.2023 (run stop)	∆I = I _{d(s)} [−] I _{d0} ,μA (at +20 °C)	
BT1	0.965	12.7	6.3	
BT2	0.692	12.5	6.4	
BT3	0.626	12.9	6.7	
Mean	0.761	12.7	6.44	

Based on the obtained fluence, we can estimate the number of xenon nuclei that passed through the detectors during the run:

$$N_{Xe} = \Phi_{Xe} \cdot S_{det}$$


 S_{det} =37,2cm²

Fluence can be estimated by the empirical formula: $\Delta I = \alpha \cdot \Phi_n \cdot V_{det}$, $\alpha = 3 \cdot 10^{-17} A \cdot cm^{-1}$, $V_{det} = 61 \cdot 61 \cdot 0.175 mm^3$, α - bulk radiation damage constant, Φ_n is the equivalent fluence of 1 MeV neutrons, related to the fluence of xenon by the relation: $\Phi_n = k \cdot \Phi_{Xe}$ K =276 - hardness factor of 4 A*GeV Xe Using the calculated hardness factor and experimentally obtained increases of currents we obtain: Fluence ¹²⁸Xe, cm⁻² Number of xenon Fluence of 1 MeV neutrons, cm⁻² nuclei BT1 $1.16 \cdot 10^9$ 4.33·10¹⁰ 3.21.1011 BT2 1.18·10⁹ 3.27 1011 4.41·10¹⁰ BT3 1.23·10⁹ 4.60·10¹⁰ 3.41.1011 Mean 3.30.1011 1.19·10⁹ 4.44·10¹⁰

2. Beam profilometer (two station):

- We expected beam profiles for Xe to be approximately the same shape as profiles in the tests with alpha-source 226 Ra, but it did not happen due to signals overlap with usage "slow" electronics (VA163) and with large area of strips (pitch = 1.87 mm);

- both profilometers were put in the "park" position and were not used in the session; - our plans and actions: we are making a new development based on DSSD with 128x128 strips (pitch = 450 μ m) and turn it to 64x64 strips (pitch=900 mkm) + new FEE based on fast chip VAHDR64

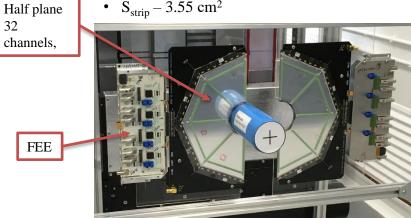
- detector: DSSD, (32p⁺×32n⁺), strips pitch = 1.8 mm, thickness (Si) -175 μm, active area (60 × 60) mm²;
- **mechanical design:** the plane of the profilometer is automatically removed from the beam zone to the parking position;
- FEE: for light (₆C ÷ ₁₈Ar) ions based on VA163 + TA32cg2 (32 ch, dynamic range (DR): -750fC ÷ +750fC) desing in progress;
- current status:

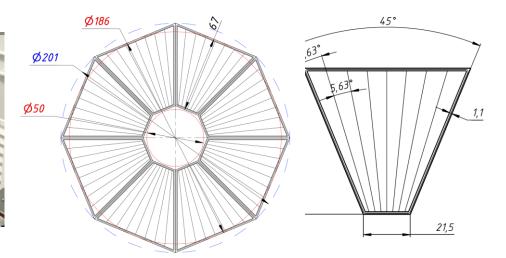
- two vacuum stations with flanges and cable connectors are ready, Silicon Detectors assembled on PCBs and tested with alpha-source (5.5 MeV), autonomus (ADC+DAQ) subsystem ready;

- for heavy (Kr \div Au) ions will be developed another version of the FEE with DR = ± 20 pC.

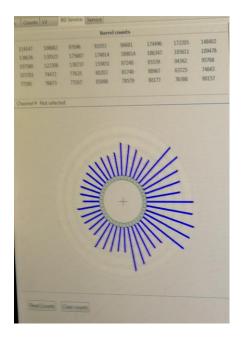
10th Collaboration Meeting of the BM@N,

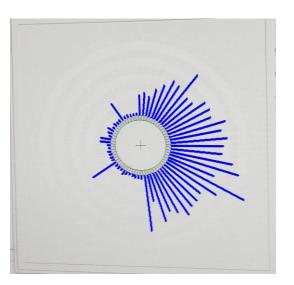
15 ÷ 19 May 2023

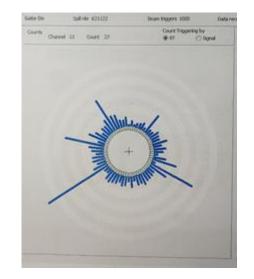

3. Two planes of Si-multiplicity trigger, 64 strips ϕ , pitch=5.63, detector thickness – 525 μm (0.0056 X_0):


- Almost did not work in session, 16.12.2023 planes were moved away from beam pipe and were outside the beam zone:
- In the last two days of session, the detector was installed in the working position and _ data was recorded (did not participate in the trigger) with a beam Xe=3.0 A*GeV;
- To make a decision on further application, an analysis of the recorded data is required _ (there are two data streams: - a monitor with a display of noise counting and multiplicity (the indicator of equipment operation is OK!); – branching to TDC with recording measurements in DAQ, these data are in doubt

The detecting plane of the silicon trigger is assembled from 8 trapezoidal one-sided detectors:

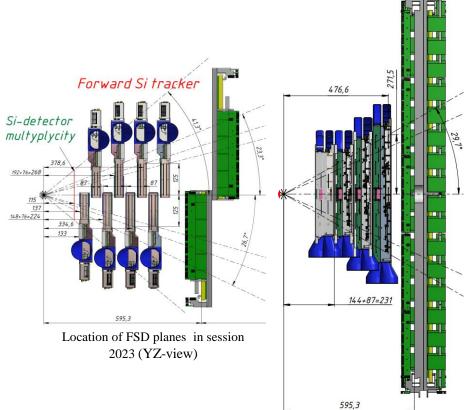

- Total 64 radial strips with 5.630 angle
- Diameter of inner hole for ion guide Ø50 mm (dead zone Ø55 mm)
- External diameter of the sensitive zone 186mm
- Max diameter 201mm
- Detector thickness 500 µm
- $S_{strip} 3.55 \text{ cm}^2$


32

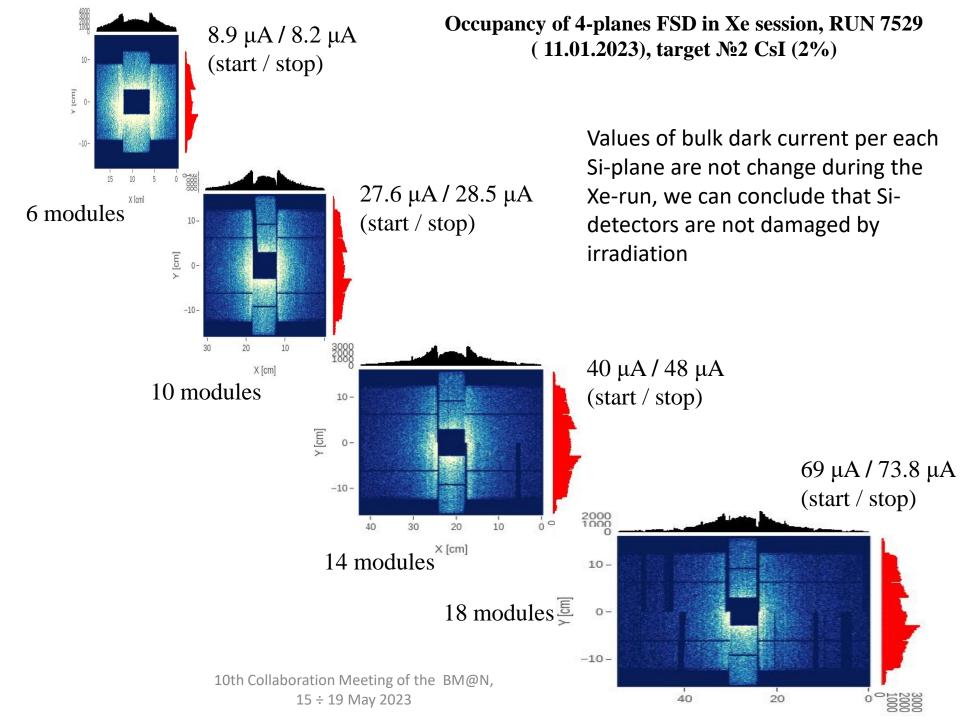


Trigger data with beam of Xe (3.0 A*GeV),

Trigger barrel detector (BD) counting distribution Forward part of Si-MD counting distribution


Noise distribution of Si-MD (without beam)

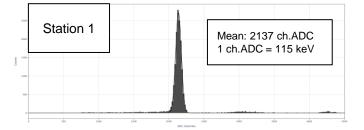
4. FSD-tracker (4 stations)

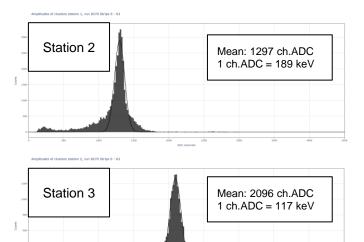


Si-tracker plane (9 modules)

Planes	#0	#1	#2	#3	Total
Modules	6	10	14	18	48
Channels	7680	12800	17920	23040	53760
Area, m ²	0,035	0,073	0,102	0,132	0,307

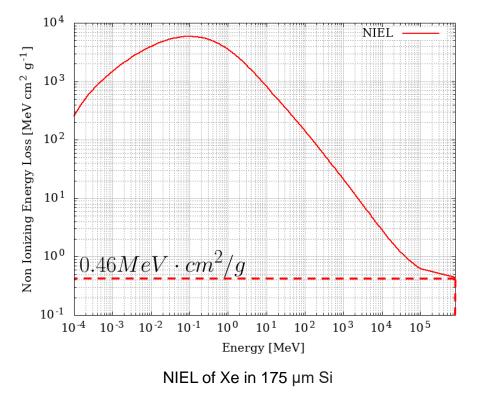
Location of FSD planes in session 2023 (XZ-view)




Backup

Energy deposition of Xe in 175 μm silicon

P+ side cluster amplitude distributions, run 8270


والمطالب والم

NIEL simulation of ¹²⁴Xe in 175 µm silicon

BT Si detectors were installed in the most severe radiation conditions - in a direct beam of heavy xenon ions. Non-ionizing energy losses (NIEL) are used as a measure of the degree of radiation damage.

Using GEANT4 with the SR-NIEL library, NIEL of Xe in 175 μ m Si values were obtained.

NIEL from 1 MeV neutron in Si (ASTM Standard E722-19):

$$NIEL_n = 0.0016MeV \cdot cm^2/g$$

NIEL from 4 A*GeV Xe:

$$NIEL_{Xe} = 0.458 MeV \cdot cm^2/g$$

Hardness factor of 4A*GeV Xe:

$$NIEL_{Xe}/NIEL_n \approx 276 \Rightarrow \Phi_n = \Phi_{Xe} \cdot 276$$

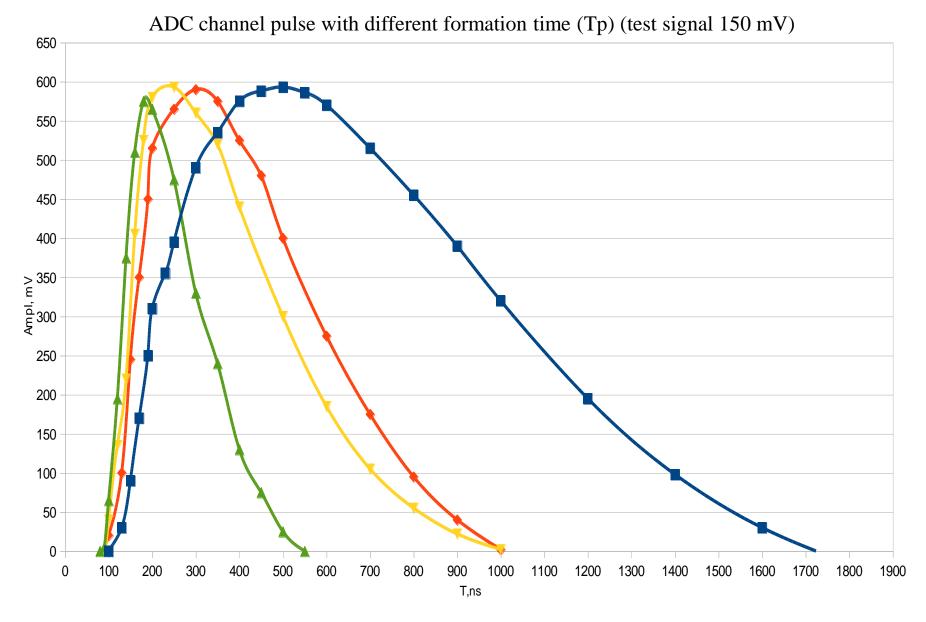


Fig.4. Pulse shape of the test signal=1.8 pCl at different tp values, HDR 64 chip(VA)

10th Collaboration Meeting of the BM@N, 15 ÷ 19 May 2023

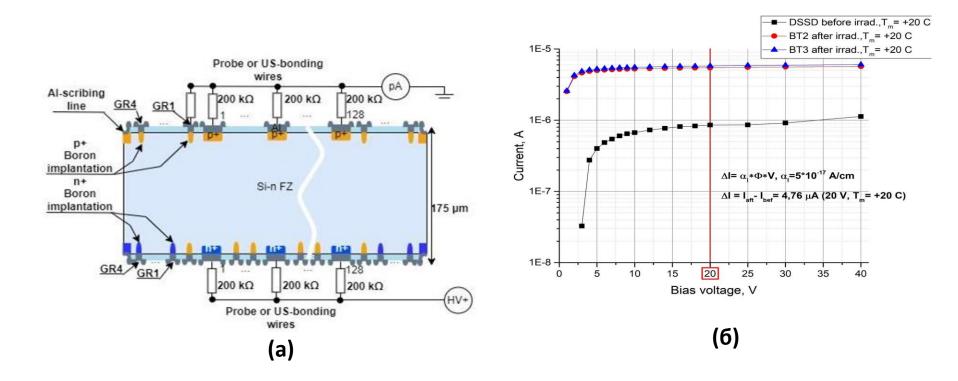


Рис.5. Схема измерений (а) темнового тока двухстороннего стрипового Siдетектора и ВАХ (б) до и после сеанса.

Формула определения эквивалентного 1МэВ флюенса нейтронов по повреждениям кремния $\Delta I = \alpha_1 \cdot \Phi \cdot V$ где: α_1 – токовая константа повреждений кремния равняется 5×10⁻¹⁷ A/см, при +20°C для нейтронов с энергией 1 МэВ и физически означает приращение тока в кремниевом детекторе объемом 1см³ от прохождения одного нейтрона (1 МэВ), Φ ,см⁻² – флюенс нейтронов, V, см⁻³ – объем детектора.