
Status of the BmnRoot optimization

S .NE MNYUG I N

S A I N T - P E T E R S B U R G S T A T E U N I V E R S I T Y

10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGINMay 2023

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 2

Summary of previous BmnRoot optimizations

 Implementation of OpenMP multithread parallelization in some simulation

modules of BmnRoot.

 PROOF (Parallel ROOT Facility) integration into the event reconstruction

part of the BmnRoot framework.

 Geant4 multithreading in simulation part of the BmnRoot.

 Vectorization of the ADC Strip Decoder module with vector intrinsics.

 Comparative study of various compilers (GCC vs Intel).

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 4

Current performance and optimization issues

Test bench

ACER Nitro 5 AN515-52-75S2,CPU Intel Core i7
8750H (6 cores, 2x Hyperthreading, AVX2 vector
extension), 32 Gb RAM.

Timing for two tracking methods

• L1 (CellAuto) tracking ~0.5 sec / event.

• Vector Finder (VF) ~2.8 sec / event.

Optimization methods under consideration

1. “Small” code improvements.

2. Vectorization of Kalman Filter and Field Map
modules by vector intrinsics.

3. Evaluation of performance efficiency of
computations offload on hybrid architectures.

4. Algorithmic optimizations.

Focus of optimization

• BmnKalmanFilter.cxx / BmnKalmanFilter.h

• BmnFieldMap.cxx / BmnFieldMap.h

• BmnNewFieldMap.cxx / BmnNewFieldMap.h

“Small” code improvements

#include <vector>

…

vector<Double_t> xIn;

xIn[0] = par->GetX();

xIn[1] = par->GetY();

xIn[2] = par->GetTx();

xIn[3] = par->GetTy();

xIn[4] = par->GetQp();

vector<Double_t> xOut(5, 0.);

vector<Double_t> F1(25, 0.);

…

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 5

“Vectors are sequence containers representing arrays that can change in

size.”

But convenience of manipulating with dynamic arrays

must be paid. And cost is performance!

What may be done:
1. Go back to conventional static arrays if possible.

2. If using vector templates:
• use more efficient methods for elements substitution (less memory

transactions);

• a priory reservation of estimated number of elements.

vector<Double_t> prevPredX;

prevPredX.reserve(5);

prevPredX.emplace_back(prevNode->GetPredictedParam()->GetX());

…

vector<Double_t> prevPredX;

prevPredX.push_back(prevNode->GetPredictedParam()->GetX());

…Estimated improvement

in time ~10 % but it

may be more

significant

Vectorization of Kalman Filter and Field Map
modules by vector intrinsics

The data is packed into vectors, which are

then processed in parallel => Loops

iterations are reduced.

Vectorization for conventional arrays is

partly implemented. Work is in progress.

Vectorization by xmmintrin-vector

intrinsics for vector templates is more

laborious. Work is in progress.

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 6

Intrinsics

SIMD extensions are

assembly functions, and

programming languages

with any higher level of

abstraction cannot

process them directly.

However, there are built-

in wrappers for their use,

which are called

intrinsics.

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 7

…

#pragma GCC target("avx2")

#pragma GCC optimize("O3")

#include <x86intrin.h>

…

__m256d s;

__m256d *cInxx, *cIn_tmpxx;

cInxx = (__m256d*) cIn;

cIn_tmpxx0 = (__m256d*) cIn_tmp;

…

s = _mm256_broadcast_pd(0);

…

Algorithmic optimizations. Field map.

List of first hotspots and source code of one of most important hotspot from dynamic analysis

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 9

Too much addresses to

the Field Map?

Intrinsics

SIMD extensions are

assembly functions, and

programming languages

with any higher level of

abstraction cannot

process them directly.

However, there are built-

in wrappers for their use,

which are called

intrinsics.

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 7

…

#pragma GCC target("avx2")

#pragma GCC optimize("O3")

#include <x86intrin.h>

…

__m256d s;

__m256d *cInxx, *cIn_tmpxx;

cInxx = (__m256d*) cIn;

cIn_tmpxx0 = (__m256d*) cIn_tmp;

…

s = _mm256_broadcast_pd(0);

…

Tuning of the BmnRoot for hybrid architectures

Dilemma - choice of the programming technology – something new (Intel OneAPI

Data Parallel C++ etc.) or traditional (CUDA or OpenCL)?

CUDA – hybrid architectures with General Purpose GPU. Implementation of CUDA

into simulation module of the BmnRoot is in progress and its efficiency is under

evaluation.

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 11

Summary

• Intel® VTune™ Profiler was used to analyze the code of the BmnRoot software package.

• “Small” code improvements are considered.

• Vectorization of the tracking is in progress.

• Hybridization of the BmnRoot is under evaluation.

• Need for the Field Map usage in the BmnRoot become more and more obvious.

May 2023 10TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 13

Thank you for attention

