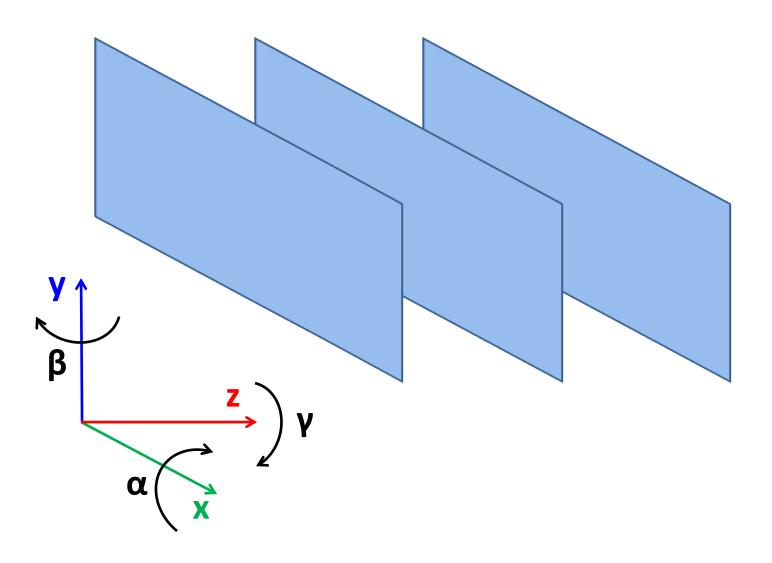

Geometry alignment of BM@N GEM detectors

Zarif Sharipov


Introduction to Alignment

Introduction to Alignment

Introduction to Alignment

Principle of alignment ¹,

$$\chi^2 = \sum_{i=1}^{n_{track}} \sum_{j=1}^{n_{det}} \frac{\left[\Delta S_{ij}(u_{ij}, \alpha_i^t, \alpha_j^a)\right]^2}{\sigma_j^2}$$

$$\Delta S_{ij} = \Delta S_{ij}^0 + \sum_{k} \frac{\partial \Delta S_{ij}}{\partial \alpha_k} \alpha_k$$

$$\frac{1}{2} \frac{\partial \chi^2}{\partial \alpha_m} = \sum_{i} \sum_{j} \frac{1}{\sigma_j^2} \frac{\partial \Delta S_{ij}}{\partial \alpha_m} \left(\Delta S_{ij}^0 + \sum_{k} \frac{\partial \Delta S_{ij}}{\partial \alpha_k} \alpha_k \right) = 0$$

- 1. Volker Blobel, Claus Kleinwort. A New method for the high precision alignment of track detectors (https://arxiv.org/abs/hep-ex/0208021)
- 2. https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html

Principle of alignment

$$\begin{pmatrix}
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{1}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{1}} & \cdots & \sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{1}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{1}} & \cdots & \sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial \Delta S_{ij}}{\partial \alpha_{m}} \Delta S_{ij}^{0} \\
\vdots & \vdots & \vdots & \vdots$$

$$\Delta S_{ij} = u_{ij} - A_i z - B_i + du_j$$
 $\alpha_i = A_i, \quad i = 1, ..., n_t r$
 $\alpha_i = B_i, \quad i = n_t r + 1, ..., 2n_t r$
 $\alpha_i = du_j, \quad i = 2n_{tr} + 1, ..., 2n_t r + n_{det} - 2$

 N_d = 6 - number of detectors N_t = 5 - number of tracks $\alpha_1, \ldots, \alpha_{10}$ - parameters of tracks $\alpha_{11}, \ldots, \alpha_{14}$ - alignment parameters of the detectors

S ₂	0	0	0	0	S_1	0	0	0	0	Z_2	Z_3	Z_4	Z_5
0	S_2	0	0	0	0	S_1	0	0	0	Z_2	Z_3	Z_4	Z_5
0	0	S_2	0	0	0	0	S_1	0	0	Z_2	Z_3	Z_4	Z_5
0	0	0	S_2	0	0	0	0	S_1	0	Z_2	Z_3	Z_4	Z_5
0	0	0	0	S_2	0	0	0	0	S_1	Z_2	Z_3	Z_4	Z_5
S_1	0	0	0	0	N_{d}	0	0	0	0	1	1	1	1
0	S_1	0	0	0	0	N_{d}	0	0	0	1	1	1	1
0	0	S_1	0	0	0	0	N_{d}	0	0	1	1	1	1
0	0	0	S_1	0	0	0	0	N_{d}	0	1	1	1	1
0	0	0	0	S_{1}	0	0	0	0	N_{d}	1	1	1	1
Z ₂	Z_2	Z_2	Z_2	Z_2	1	1	1	1	1	N_{t}	0	0	0
Z_3	Z_3	Z_3	Z_3	Z_3	1	1	1	1	1	0	N_{t}	0	0
Z_4	Z_4	Z_4	Z_4	Z_4	1	1	1	1	1	0	0	N_{t}	0
Z ₅	Z ₅	Z_5	Z ₅	Z_5	1	1	1	1	1	0	0	0	N_{t}

Principle of alignment

1. IMSL Fortran Library

(https://www.imsl.com/products/imsl-fortran-libraries)

2. Eigen

(https://eigen.tuxfamily.org/index.php?title=Main_Page)

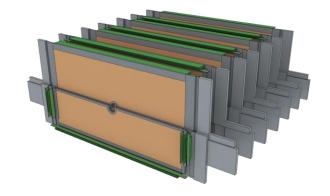
3. Millepede-II

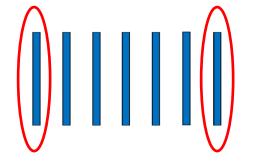
(https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html)

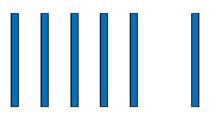
RUN 7651

Period: 8

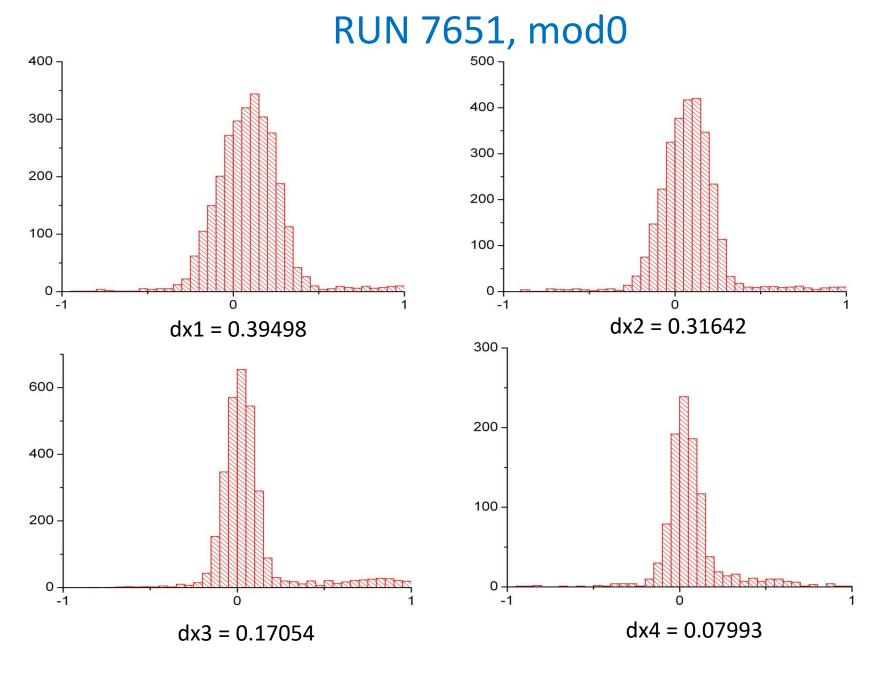
Number: 7651

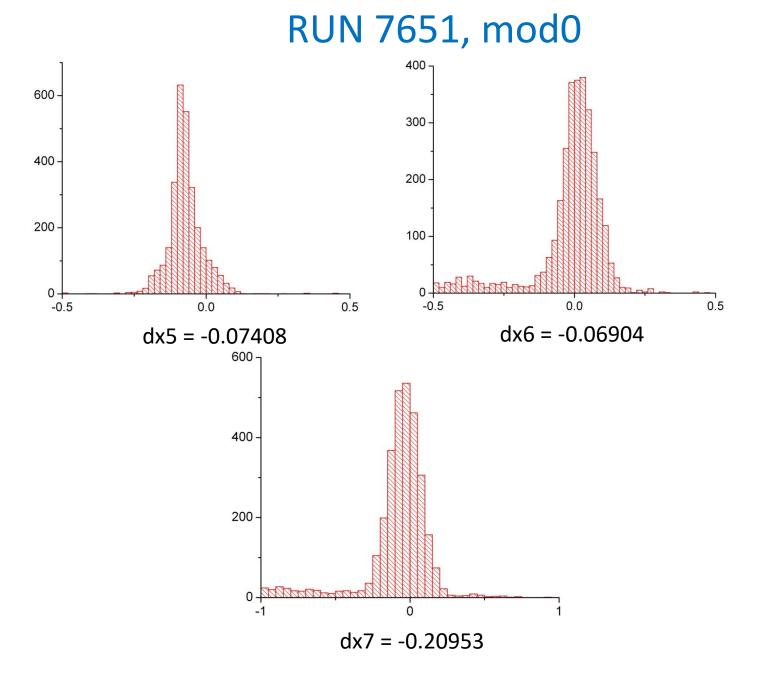

Beam: A = -1, Z = -1

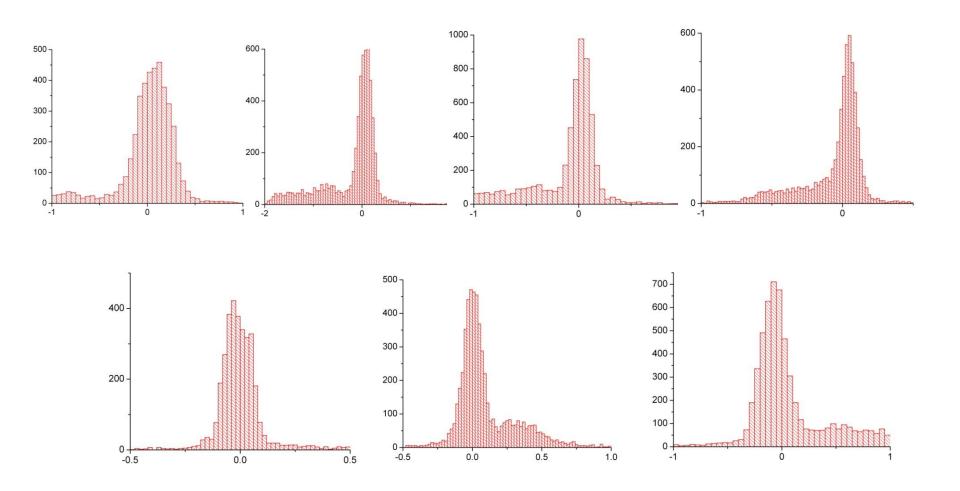

Beam energy: 3.8 GeV


Target: A = -1, Z = -1

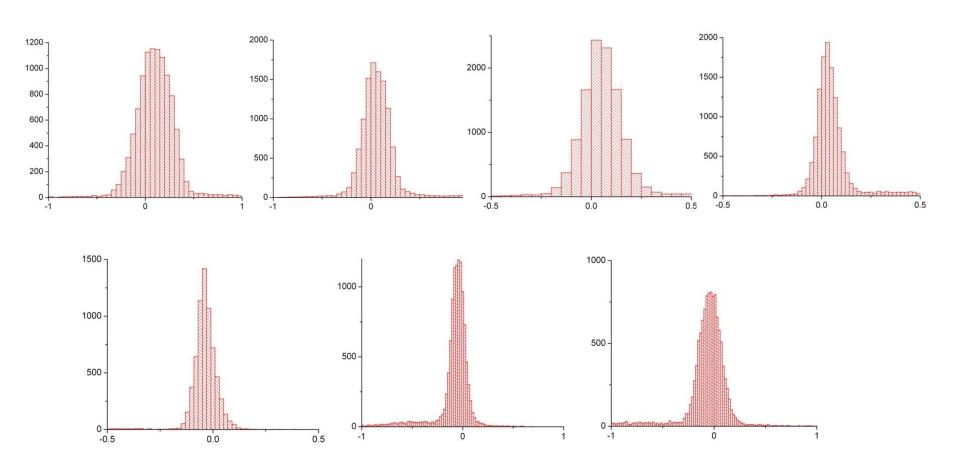
Field voltage: 0.2701 mV


N_events: 100000

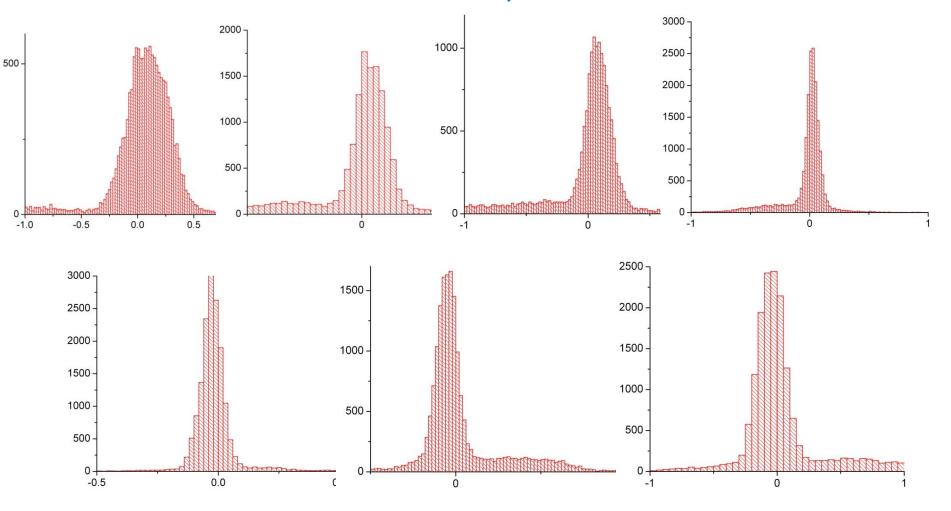




10th Collaboration Meeting of the BM@N Experiment at the NICA Facility



10th Collaboration Meeting of the BM@N Experiment at the NICA Facility


RUN 7651, mod1

RUN 7651, mod2

RUN 7651, mod3

RUN 7651 Summary dx

n	nodule 0		module 1				
Mean	SD	Size		SD			
0.39498	0.86762	3309		0.74695			
0.31642	0.6966	3397		0.67881			
0.17054	0.4231	3321		0.44522			
0.07993	0.2303	1041	-0.05939	0.29955	5823		
-0.07408	0.08578	2895	0.00978	0.18982	3480		
-0.06904	0.2452	3302	0.10455	0.24773	5721		
-0.20953	0 . 4855	 3395	0.15267	0.52695	6085		

RUN 7651 Summary dx

	module 2		module 3			
	SD		Mean	SD	Size	
	0.74386			0.74032	14772	
0.15765	0.50836	11929	-0.13648	0.62998	15128	
0.12819	0.35597	12263		0.47053		
0.06682	0.15765	12741	-0.02658	0.24817	18996	
-0.04119	0.11277	6782		0.21251		
-0.10345	0.25243	11346	0.03872	0.279	17214	
-0.13366	0.40406	12144	0.08864	0.45539	17124	