
Software contribution from MIPT:
Development of Event Metadata
System and Monitoring & High-

Availability Service

Peter Klimai

10th Collaboration Meeting of the BM@N Experiment at the NICA Facility, May 14–19, 2023

Current Projects Summary

2

Project URL Notes

Event Metadata System https://git.jinr.ru/nica_db/emd First version deployed; updates
discussed in this talk

Deployment scripts for EMS This talk

High Availability design for EMS This talk

Statistics collection and
visualization for EMS

WIP

Next-generation event display https://github.com/SciProgCentre
/visionforge

See talk by A. Nozik

Monitoring service https://mon-service.jinr.ru
https://git.jinr.ru/nica/bmnroot/-
/tree/dev/services/is_monitor

In production; updates planned.
This talk

Slow control system viewer https://bmn-tango.jinr.ru Needs update to match new SCS
and its database

https://git.jinr.ru/nica_db/emd
https://github.com/SciProgCentre/visionforge
https://mon-service.jinr.ru/
https://git.jinr.ru/nica/bmnroot/-/tree/dev/services/is_monitor
https://bmn-tango.jinr.ru/

Event Metadata System – Update

EMS Architecture and Features

4

For more details:

E. Alexandrov, I. Alexandrov, A. Chebotov,

A. Degtyarev, I. Filozova, K. Gertsenberger,

P. Klimai and A. Yakovlev, “Implementation

of the Event Metadata System for physics

analysis in the NICA experiments”, J. Phys.:

Conf. Ser. 2438, 012046 (2023).

• Event Metadata System
• Event Catalogue is based on PostgreSQL
• Integrates with BM@N Condition database
• REST API and Web UI developed based on

Kotlin multiplatform
• Configurable to support different metadata
• ROOT macro to write BM@N events in the

catalogue
• Role-based access control implemented
• Monitoring

EMS Updates

• Recent EMS Updates (discussed next):
• New unified REST API scheme

• Simplified to support only one metadata table per EMS instance

• OpenAPI documentation (aka Swagger) now available

• Database performance improvement studies (indexes)

• High Availability solution

• Deployment scripts (Ansible based)

5

New scheme for REST API

6

HOSTNAME / SERVICE / VERSION / ENTITY?parameter_set

https://bmn-event.jinr.ru/event_api/v1/event?
GET

POST

DELETE

run_number=3950:4000&beam_particle=Ar&target_particle=Al

energy=3.16:3.18&target_particle=SRC%20Lead

HOSTNAME=https://bmn-[SYSNAME].jinr.ru

ENTITY=tablename without last ‘_’ (if present)

For the Event Metadata System (EMS), SYSNAME = event

SERVICE=[SYSNAME]_api

VERSION=v1 (v2…)

parameters are separated by ‘&’
ranges: min:max → >=min AND <=max

min: → >=min :max → <=max

For the Unified Condition Database (UniConDa), SYSNAME = uniconda

• The new scheme is unified for different BM@N Information Systems

Current BM@N Database Schema

7

Condition Database:EMS
Database:

Configurable

Web UI Main Page

8

Special script is
collecting this
statistics on the
backend (WIP)

Main search page

9

Preselection based
on Condition DB

Selection based on
configured parameters

Selection based on
standard parameters

Limit and offset

OpenAPI pages for EMS

10

Index Selection (Type and Columns)

11

• Measurements with test database instance are shown (50M events)

Response time

12

• Adding more periods to test database

Index size on disk

13

• BRIN vs. BTREE
• Overall, BRIN (Block Range Index)

works better for indexing columns
having some natural correlation with
their physical location within the table https://www.crunchydata.com/blog/postgres-indexing-when-does-brin-win

https://www.postgresql.org/docs/current/brin-intro.html

https://www.crunchydata.com/blog/postgres-indexing-when-does-brin-win
https://www.postgresql.org/docs/current/brin-intro.html

High Availability – Task

• Need for HA
• EMS as well as other IS are essential for timely obtaining physical results of

the experiment

• From client point of view, connection must be initiated to single IP / domain
name
• We do not want to ask client to keep several addresses like primary/secondary ones

• Considering 2 to 1, active/passive redundancy

• Need to avoid split brain and no brain scenarios

14

High Availability – Solution

• Base for HA solution
• PostgreSQL supports streaming replication out of the box (one master to

one/many replica servers)
• https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION

• Completely synchronous replication is also available (at a performance price)
• https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION

PostgreSQL
master

PostgreSQL
replica

Streaming replication

host1 IP host2 IP

15

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION

Switchover to new master

• Switchover
• One command on replica - pg_ctl promote

• Old master must be turned off to avoid split brain

• Monitoring system can perform switchover (WIP), or it can be done manually

• It works, but the big question is – where does a client connect?

PostgreSQL
master

PostgreSQL
New master

host1 IP host2 IP

16

Solution based on VRRP (single L2 domain)

• Keepalived provides virtual IP address for client connection

• This works when both servers are in the same L2 (broadcast) domain

PostgreSQL
master

HAProxy

keepalived

VIP

host1 IP

host1

PostgreSQL
replica

HAProxy

keepalived

host2 IP

host2

VIP

VRRP

Streaming replication

Event catalogue
(master)

Event catalogue
(backup)

Client

SQL-query

17

Avoiding single point of failure

• VRRP-based solution can be
considered final if:
• L2-segment is built with

redundancy (both for links and
switches)

• VIP’s network is announced from
at least two routers

• Not possible to implement
without access to network
infrastructure

18

master replica

Net/mask
metric=10

Net/mask
metric=20

Solution based on DNS

• Solution details (WIP)
• PostgreSQL replication unmodified

• Client connection to host/domain
name (needs DNS settings)

• Monitoring system performs
switchover
• Change DNS record

• Perform pg_ctl promote

• Switchover time determined by DNS
TTL settings

19

master replica

DNS1 DNS2

IP net 1 IP net 2

• Why automated deployment?
• Manual deployment of a distributed system is slow and error-prone
• Automation increases speed and predictability
• Avoids issue of “forgotten step” in documentation
• EMS instance may be deployed by other NICA experiments

• Main components of solution
• Ansible
• Docker

• Inputs
• EMS configuration as YAML template
• Deployment configuration as Ansible variables in hosts file

• To be replaced by unified JSON config (WIP)

20

EMS Automated Deployment

21

Ansible Playbook example (abbreviated)

(env) [lab@alma1 ems-deploy]$ cat deploy-pgsql.pb.yaml

- name: Deploy PostgreSQL on Event Catalogue hosts

hosts: event_catalogue

become: yes

tasks:

- name: Install packages

dnf: "name={{ item }} state=present"

with_items:

- postgresql

- postgresql-server

- name: Install Python packages

pip: "name={{ item }} state=present"

with_items:

- psycopg2-binary

…

…

- name: Check if PostgreSQL is initialized

ansible.builtin.stat:

path: "/var/lib/pgsql/data/pg_hba.conf"

register: postgres_data

- name: Initialize PostgreSQL

command: "postgresql-setup initdb"

when: not postgres_data.stat.exists

- name: Start and enable services

service: "name={{ item }} state=started enabled=yes"

with_items:

- postgresql

…

22

Deployment example (abbreviated)
[lab@alma1 ems-deploy]$ source env/bin/activate

(env) [lab@alma1 ems-deploy]$ ansible-playbook deploy-pgsql.pb.yaml

PLAY [Deploy PostgreSQL on Event Catalogue hosts] **

TASK [Gathering Facts] ***

ok: [ems2]

ok: [ems1]

TASK [Install packages] **

ok: [ems1] => (item=postgresql)

ok: [ems2] => (item=postgresql)

ok: [ems1] => (item=postgresql-server)

ok: [ems2] => (item=postgresql-server)

…

TASK [Apply SQL schema file] ***

changed: [ems1]

PLAY RECAP ***

ems1 : ok=13 changed=1 unreachable=0 failed=0 skipped=2 rescued=0 ignored=0

ems2 : ok=16 changed=4 unreachable=0 failed=0 skipped=2 rescued=0 ignored=0

(env) [lab@alma1 ems-deploy]$ ansible-playbook deploy-vrrp.pb.yaml

(env) [lab@alma1 ems-deploy]$ ansible-playbook deploy-web-api-docker.pb.yaml

• After running the three playbooks:

23

The Result

PostgreSQL
master

keepalived

EMS web-api
container

VIP

host1 IP

host1

PostgreSQL
replica

keepalived

EMS web-api
container

host2 IP

host2

VIP

VRRP

Streaming replication

Event catalogue
(master)

Event catalogue
(backup)

Client

REST, Web, SQL

Monitoring Service Overview

• Monitoring Service Features
• Ping and PG-SQL request to check database server status

• Configurable via JSON file

• Email notifications

• Response time stored in InfluxDB

• Use Grafana for visualization and additional alerting

• Monitor server parameters such as Disk, CPU, Memory, etc.

• Planned new features:
• Web-services monitoring

• API endpoint monitoring

• HA switchover functionality

Monitoring Service - Task

25

Monitored Host

Monitoring Service - Components

mon-service.py

InfluxDB

Grafana

Monitored Host

Mail server

ICMP ping
PG-SQL request

Monitored Host

Telegraf
Metrics for
CPU, disk,
memory, etc.

https://mon-service.jinr.ru

26

https://mon-service.jinr.ru/

Monitoring Service View Example

27

https://mon-service.jinr.ru

https://mon-service.jinr.ru/

Thank You!

28

