

On possible development of MAPS (monolithic active pixel sensor) based on spherical p-n junction

Sergey Vinogradov

Solid State Physics Division, P.N. Lebedev Physical Institute Silicon Photomultiplier Lab, NRNU MEPhI CERN CMS collaboration

Outline

- Demands for sensors produced in Russia
- Designs of MAPS (monolithic active pixel sensor)
- O Development of Tip APD Silicon Photomultiplier based on spherical p-n junction
- On possible development of MAPS

Pixel sensors for vertex / tracking detectors

• High demands in particle detectors

Sergey Vinogradov «On possible development of MAPS based on spherical p-n junction»

Monolithic vs Hybrid

- Hybrid = sensor chip + FEE chip coupled by flip-chip integration
 - Became obsolete, large total thickness => particle scattering and resolution losses
- Monolithic = sensor region + FEE region on the same Si wafer
 - Many advantages, intense R&D at high-tech centers, reproduction started in China

MAPS-ALPIDE – partial depletion design

Partial depletion => slow charge collection, low radiation hardness

FD-MAPS (ARCADIA) – full depletion design

■ Full depletion at -160 V @300 um Si, -40 V@100 um Si sensor thikness

 Standard CMOS process Electronics buried in deep p-well \bigcirc o n-type high p substrate Back-side standard CMOS process • Fully depleted substrate Drift charge collection o Bulk rad hardness

MALTA – full depletion + charge focusing

O Prototype: 100 μ m thick, 36 μ m pixel, full depletion at -6 V, operating voltage \leq -50 V

☑ Prototype 2022: Si-epi 25 um, pixel size 25 um, array 192×64 (~512×1024 to be in 2023)

R&D on Silicon Photomultiplier (SiPM): basic studies (1980s, LPI), MRS APD (1990s, CPTA), SiPM (2000s, MEPhI)

P. Buzhan, B. Dolgoshein et al, ICFA Instrum. Bull., 2001

Modern SiPMs based on planar p-n junction (MEPhI design): Hamamatsu, ST Microelectronics, Excelitas, SensL/On Semiconductor, FBK/Broadcom

FBK

Sergey Vinogradov «On possible development of MAPS based on spherical p-n junction» 10th Collaboration Meeting of the BM@N Experiment at the NICA Facility

18-05-2023

Non-planar SiPM designs based on quasi-spherical p-n junctions: Metal-Resistor-Semiconductor APD, Micro-well APD, Tip APD

Sadygov, Z. Three Advanced Designs of Avalanche Micro-Pixel Photodiodes (NDIP 2005)

Vinogradov, S. Tip Avalanche Photodiode—A Spherical-Junction SiPM Concept (NIMA 2023)

Advantages and drawbacks of TAPD

Advantages

- <u>High efficiency</u> (no cell boundaries) => high PDE;
- ♦ Low capacitance =>
 - fast timing response, fast recovery $\sim RC$,
 - low readout noise ~ kTC;
- <u>High Dynamic Range (small cells)</u>
- Low breakdown voltage =>
 - low power consumption,
- Low size of high electric field region =>
 - low DCR by SHR (TBD)
 - radiation hardness (TBD);

Drawbacks

- High sensitivity of Vbd to the tip radius
- High risk of tunneling near the tip
- Questionable reproducibility of the tips

TAPD developed in collaboration with KETEK (2017 – 2020): record performance

- Single electron response time = 4 ns
- Single cell recovery time = 4 ns

- Max PDE = 73% (608 nm)
- **•** NIR PDE = 22% (905 нм)
- Wide spectral range: $PDE \ge 50\% (400 800 \text{ nm})$

Sergey Vinogradov «On possible development of MAPS based on spherical p-n junction»

10th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Проект по разработке SiPM непланарной конструкции с МИЭТ

- Ведется НИОКР «Разработка нового типа кремниевых фотоумножителей непланарной конструкции»
 - Грант фонда содействия инновациям «Техностарт-1» на 2022 2023 гг.
 - На технологической базе ЦКП и ТЦ МИЭТ, гл. технолог А.А. Жуков
 - Разработаны ключевые элементы технологии, техпроцесс, фотошаблоны
 - Выпуск 1-й партии планируется летом 2023

Адаптивный коэффициент умножения: 10 … 10⁶ @ ∆U = 10 V

Gain ~ 10 @ U ~ 40 V, Idark ~ 40 pA/mm² Gain ~ 10^{6} @ U ~ 50 V, I dark ~ 0.5 mA/mm²

Заключение

- **Возможные конструкции непланарных SiPM + MAPS:**
 - SiPM + MAPS-ALPIDE
 - SiPM + FD-MAPS
- Возможные преимущества конструкций:
 - Сенсор и активная электроника изолированы и независимы
 - Сенсор имеет минимальную ёмкость (сфера) и адаптивную чувствительность (лавина)
 - упрощение электроники (без усиления)
 - уменьшение толщины сенсора (меньше рассеяние)
- Возможность разработки и выпуска в Зеленограде рассматривается
 - Сергей Викторович Змеев, МИЭТ
- Возможность заинтересованности ВМ@N предполагается
 - Михаил Моисеевич Меркин, НИЯФ МГУ

СПАСИБО ЗА ВНИМАНИЕ!

Вопросы? Замечания? Предложения?

Виноградов Сергей Леонидович

vinogradovsl@lebedev.ru

Разработка TAPD SiPM

- НИОКР в сотрудничестве с компанией КЕТЕК, Германия (2017-2020)
 - На технологической базе КЕТЕК, X-Fab, Fraunhofer EMFT
- Образцы TAPD 1х1 мм², шаг ячеек 10 − 15 мкм, радиус 0.6 − 1 мкм

Structure Name	Nominal Radius (r_j)	Breakdown Voltage
S06	0.6 µm	43.4 V
S08	0.8 µm	50.7 V
S1 0	1.0 µm	53.9 V

- Измерения образцов в КЕТЕК и МИФИ
 - Подтверждение рекордных параметров в лаборатории SiPM компании Broadcom

Публикации (2020 - 2022)

[1] E. Engelmann, W. Schmailzl, P. Iskra, F. Wiest, E. Popova, S. Vinogradov, "Tip Avalanche Photodiode - a new generation Silicon Photomultiplier based on non-planar technology", *IEEE Sensors J.* (2020) Vol 21, No 5, 6024-6034

[2] S. Vinogradov, E. Popova, W. Schmailzl, E. Engelmann "Tip Avalanche Photodiode – a new wide spectral range Silicon Photomultiplier", *"Radiation Detection Systems"*, Taylor & Francis (2021) Vol. 1, Ch. 9, 257–288

[3] S. Vinogradov, "Tip Avalanche Photodiode – a spherical-junction SiPM concept", 9th Int. Conf. New Developments in Photodetection, Troyes, France, 4 - 8 Jul. 2022.

Результаты измерений TAPD: разрешение числа фотоэлектронов

• Функциональность SiPM – разрешение числа фотонов - подтверждена

- Возможно, есть разброс радиуса сферических p-n переходов
- Характеризация по пикам по стандартным методикам SiPM

Подтверждение радиационной стойкости TAPD (2022)

- ◙ Исследования UHH/DESY Detector Lab
- Облучение тепловыми нейтронами 1 МэВ
- ☑ Дозы до 10¹² см⁻²
- Сравнение с планарными SiPM
 - ◆ КЕТЕК МР15: 15 мкм ячейки, 1х1 мм²
 - Типичная для SiPM рад. стойкость
- Рост темнового счета (при $\Phi = 10^{12} \text{ см}^{-2}$)
 - ◆ TAPD **10³ pa3**
 - ◆ KETEK MP15 <u>10⁵ pa3</u>

J. Römer, E. Garutti, W. Schmailzl, J. Schwandt, S. Martens, "Radiation Hardness of a Wide Spectral Range SiPM with Quasi-Spherical Junction", *NDIP* (2022) / NIMA (2023). http://arxiv.org/abs/2209.07785.

Figure 7: The dark count rate at 20 °C calculated using Eq. 7 normalized to a detector area of 1 mm^2 for the TAPD 0.6 µm and the MP15. The overvoltage is given as $V_{\text{over}} = V_{\text{bias}} - V_{\text{BD}}$.