Inclusive π^0 production for online polarimetry in SPD (SpdRoot-4.1.5)

Katherin Shtejer Díaz

SPD Collaboration Meeting 22.02.2023

Simulation settings

$$p+p \rightarrow \pi^0 + X$$

- SpdRoot version 4.1.5
- $pp @ \sqrt{s} = 27 \text{ GeV}$
- \square Particle generator: Pythia 8 (number of events: $\sim 100 \text{M}$)
- ☐ Minimum Bias: *SoftQCD:inelastic*
- \square Smeared vertex in $\Delta Z = \pm 30 \ cm$ (Gauss)
- \Box E_{min}^{γ} = 400 MeV (γ : reconstructed particle)
- Reconstructed photons detected in the ECAL Endcaps detId = 1 (endcapZ+) Z = +207.6 cm detId = 0 (endcapZ-) Z = -207.6 cm
- \Box Cell size = 4 cm
- \blacksquare π^0 are reconstructed from the $M_{
 m inv}$ of γ pairs

General characteristics

Physics & MC Meeting, 22.02.2023

Katherin Shtejer

General characteristics

Estimation of π^0 yield in the ECAL endcaps

Expected yield for 10 min at reaction rate $4 \cdot 10^6 s^{-1} (\sqrt{s} = 27 \text{ GeV})$

SpdRoot	$N_{\pi^0}(10 \text{ min})$	$\sigma_{stat}(\%)$
4.1.3	3.4783e+08	0.0054
4.1.5	2.4519e+08	0.0064

$$p^{\uparrow} + p \to \boldsymbol{\pi^0} + X \qquad \phi = 2\pi$$

The cross section of hadron production in polarized $p^\uparrow+p$ collisions, is modified in azimuth.

$$\frac{d\sigma}{d\varphi} = \frac{d\sigma}{d\varphi_0} \left[1 + P \cdot A_N \cdot \cos(\varphi + \varphi_0) \right]$$

Azimuthal cosine modulation

$$N_{\pi^0}(\varphi) = A[1 + P \cdot A_N \cdot \cos(\varphi + \varphi_0)]$$

$$A_N = rac{B}{P}$$
 $N_{\pi^0} (\varphi)$: Yield of π^0

P: Beam polarization

 $P \sim 0.7$ was assumed

- The cosine modulation fittings were performed for two cases:
- 1- pure cosine function, 2- adding a free phase
- The spin dependent π^0 yields for each bin are extracted from the invariant mass spectra in different $x_{\rm F}$ sub-ranges for each φ bin.

Azimuthal cosine modulation of π^0 yields in x_F intervals, $A(1 + B\cos(\varphi + \varphi_0))$

$A_{\rm N}$ in the ECAL endcap

SpdRoot estimation of the statistical accuracy of the beam polarization measurement, with $pp \to \pi^0 X \ @ \sqrt{s} = 27 \ GeV$, in SPD ECAL endcaps.

Estimated time	$\frac{\Delta P}{P}$	
	SpdRoot - 4.1.3	SpdRoot - 4.1.5
2 min	4.59 %	3.05 %
5 min	2.90 %	1.93 %
10 min	2.05 %	1.37 %

The error of the beam polarization in the experiment **E704** is estimated in **10%**, as reported in FERMILAB-Pub-91/15-E[E581,E704]

Taking the last 4 points $(0.3 \le x_F < 0.7)$:

8.7% (Experiment E704)

$$\frac{\Delta P}{P} \approx 0.0873$$

Summary

- In the release SpdRoot 4.1.5 the π^0 yield decreased 1.4 times with regards to analysis based on the the previous version 4.1.3.
- The accuracy of the beam polarization have been estimated for pp @ 27 GeV, and is $\sim 1\%$ lower with the last version SpdRoot-4.1.5.
- From the asymmetry determination, based on SPDRoot simulations, the statistical accuracy of the beam polarization is estimated in:

$$\sqrt{s}$$
 = 27 GeV

- $ightharpoonup 2 \text{ minutes: } \frac{\Delta P}{P} \sim 3.05\%$
- > 5 minutes: $\frac{\Delta P}{P} \sim 1.93\%$
- ightharpoonup 10 minutes: $\frac{\Delta P}{P} \sim 1.37\%$
- TODO: Simulations with more statistics (at least \sim 10^9) should be carried out in order to estimate better the asymmetry errors at $x_F > 0.6$