Alignment with Tracks

Igor Potrap

JINR, Dubna

22.02.2023

Alignment

Alignment goal: determination of (small) alignment corrections.

actual geometry = nominal geometry + alignment corrections

- alignment corrections are defined in the (nominal) local reference frame of the detector element which has to be aligned
- o normally the are 6 alignment parameters: 3 shifts and 3 rotations

detector element

Y - precision coordinate; X - second coordinate shift_X goes out for tube detectors knowledge of second coordinate required for rot_Y and rot_Z parameters (no need to be precise)

example of a line with alignment constants: A | ID_r | ID_eta | ID_phi | shift_X | shift_Y | shift_Z | rot_X | rot_Y | rot_Z

Least-square minimization of track hit residuals:

track hit residual: $\epsilon_k(\mathbf{a}) = y_k^{meas} - y_k^{track}$, y_k^{meas} - measured hit position; y_k^{track} - expectation of track position;

G

a - vector of alignment parameters;

lobal
$$\chi^2$$
: $\chi^2 = \sum_k \frac{\epsilon_k^2}{\sigma_k^2}$

index k runs over all hits on all tracks.

Minimization: $\frac{d\chi^2}{da_i} = 0;$ derivatives for each alignment parameter.

System of linear equations: $C \cdot a = b;$ Solution:

 $a = C^{-1} \cdot b;$ C^{-1} – covariance matrix

iterations required (wrong initial geometry was used for track fit)

MILLEPEDE

Expected value of a measurement in a linear model: $y_k^{exp} = \boldsymbol{a}^T \boldsymbol{d}_k + \boldsymbol{\alpha}^T \boldsymbol{\delta}_k$

a, α - vectors of alignment and track parameters:

 d_k , δ_k - vectors of derivatives for the k-th measurement.

Global
$$\chi^2$$

 $\chi^2 = \sum_{k=1}^{\infty} \frac{(y_k^{meas} - y_k^{exp})^2}{\sigma_k^2} , \quad \text{index } k \text{ runs over all hits on all tracks.}$

System of linear equations:

 $\begin{pmatrix} \sum C_i & \dots & G_i & \dots \\ \vdots & \ddots & 0 & 0 \\ G_i^T & 0 & \Gamma_i & 0 \\ \vdots & 0 & 0 & \ddots \end{pmatrix} \times \begin{pmatrix} a \\ \vdots \\ \alpha_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \sum b_i \\ \vdots \\ \beta_i \\ \vdots \end{pmatrix}$ Size_of_matrix_to_invert = size_of_vector_ $\alpha \times$ number_of_tracks

Matrices C_i , Γ_i , G_i and vectors b_i , β_i are contributions from the *i*-th track to the system.

Solution for alignment parameters:

$$\boldsymbol{a} = \boldsymbol{C}^{'-1}\boldsymbol{b}^{'}$$
, where $\boldsymbol{C}^{'} = \sum_{i} \boldsymbol{C}_{i} - \sum_{i} \boldsymbol{G}_{i} \boldsymbol{\Gamma}_{i}^{-1} \boldsymbol{G}_{i}^{T}$, $\boldsymbol{b}^{'} = \sum_{i} \boldsymbol{b}_{i} - \sum_{i} \boldsymbol{G}_{i} \left(\boldsymbol{\Gamma}_{i}^{-1} \boldsymbol{\beta}_{i} \right)$.

Advantages: Can deal with large number of correlated alignment parameters, unbiased, fast.

Alignment is relative to global shift and global rotation of the detector mathematically it means that matrix $C \cdot a = b$; can not be inverted

constraints needed: number of constraints corresponds to the set of alignment parameters per one detector element

- addition of constraints in a form of strict linear equations between any number of alignment parameters (nontrivial implementation); alignment can be done as:
 - relative to a particular detector element
 - relative to the center of mass of the detector
- addition of fictional measurements (with small weights) to the matrix

most important part in terms of alignment precision!

even one "bad" track can screw up your whole matrix!

outlier rejection

- rejection of hits/tracks outside the "road width"
- decrease the *"road width"* with next alignment iterations and make a new decision on each iteration

outlier downweighting

 introduce additional errors (decrease weights) to the hits according to the distance to track

the reason why MILLEPEDE requires iterations

ATLAS Inner Detector. Track Parameter Resolution. Cosmic.

impact parameter resolution

- split cosmic tracks into top and bottom parts to plot top-bottom distributions ($\sigma = \sigma_{tb}/\sqrt{2}$)
- resolution:
 - low p_t : dominated by multiple scattering
 - high p_t : dominated by intrinsic resolution and misalignment