
Design by Contract &
Acceptance Test Driven Development

in MPDRoot

HNATIC Slavomir

OUTLINE

• Quick recap (Nov 2022 status)

• Design by Contract

• TPC API

• QA tool

• Acceptance TDD

• JSRoot Examples

• Perspectives, Next Objectives

• Final Remarks

QUICK RECAP

SOFTWARE DEVELOPMENT FOR MPD
List of the most important things done

• Complexity reduction
- downscaling/separation:

build system, reconstruction/simulation engine, physics
- codebase cleanup

• Code quality
- code reviews
- code influx under control
- testing (in process)
- formatting
- requirements modeling

• Build redesign/unified environment

• Stable release schedule

• Support & Maintenance
- service desk
- website
- telegram support chat

SWEBOK v3 (2015)

International ISO Standard

specifying the guide to

Software Engineering Body of Knowledge

TDD: ALGORITHM DEVELOPMENT

DESIGNING TESTS ON MULTIPLE ABSTRACTION LEVELS

Test level hierarchy “system / component / unit“ adapted for
MPDRoot’s backend:

• Top level…………system (bench) tests….…QA

• Middle level……….component tests……….reconstruction FairTasks
(invariant interfaces)

• Bottom level…………….unit tests…………....interface units (invariant
pure virtual methods)

Cluster Hit Finder

Preparatory work
• create invariant Base class for geometry
• interface for clusterhitfinder
• port mlem & fast implementations to it
• getting rid of singletons
• test-friendly design – dependency injection

TDD
• multilevel analysis
• multi-module analysis
• performance & accuracy criteria
• data-driven tests
• hybrid algorithms

Status & Objectives as of November 2022

DESIGN BY CONTRACT
Software Development Stages

Requirements Architecture /
Design Construction Testing Integration

SOLUTION

From the very beginning do:

• Have interfaces
• Agree on interfaces
• Manage interfaces

• Interface control document

All realizations must implement
interfaces that are agreed upon

INTEGRATION

• Rarely mentioned and almost never planned for

• Reality: multiple independent streams of development

• Assumption: once everyone finishes it will all somehow
fit in and work

• Common result: turns out to be a major issue and
a significant risk factor of project failure/delay

• Last resort fixes: redesign at late project stages,
writing of unnecessary modules

Ensures software fitness, compactness
and TESTABILITY

TPC API
API – set of signatures that are exported and available to the users of

a library or framework to write their applications.

Key API design notes
• Lead to readable code
• Easy to learn and memorize
• Be complete & stable for proper development and maintenance

(be model based)
• Outlast its implementations (invariants)
• Be hard to misuse
• Be easy to extend
• Lead to backward compatibility

Source: SWEBOK (Software Engineering Body of Knowledge), 2015

API ImplementationTesting

QA TOOL

Architecture

• QA Engine is a separated entity on its own

• interacts through API with
reconstruction/simulation backend and
generates output for visual front-end

• work of testers and algorithm developers is
separated

QA
Engine

TPC API
Visual

front-end

Implementation

• Modular design, lives in backend
interfaces, operates with abstractions

• QA engine turned off by default,
option to turn on QA for separate
modules

• output QA information stored into
.root files for use in later processing

ACCEPTANCE TDD

ACCEPTANCE TESTS = REQUIREMENTS

• development driven by multi-level acceptance tests
• requirements written in precise test case language
• acceptance criteria/their fulfillment is data-driven

Software Defects

• the later the defect is fixed, the
more it costs to correct

• detect defects early

• fix defects asap,
avoid technical debt

The more systematic we are in testing,
the more efficient/effective we are in

building/supporting/maintaining
our software.

Fundamental Rule

Data

Acceptance
criteria

Processing
multi-module

multi-level
comparison

! data are customized for acceptance criteria !

EXAMPLE IN JSROOT
CLUSTERHITFINDER COMPARISON

• Mlem

• Fast

ABSTRACTION LEVELS

• Top …………..bench….…..Reconstruction

• Middle…..component….ClusterHitFinder

• Bottom ..…….units……....Clustering, Topology, Hit extraction

jsRoot server
(remote front-end)

PERSPECTIVES, FUTURE PLAN

ENVIRONMENT for ALGORITHM IMPROVEMENT

Automation - QA Gallery / Interactive Development
using the existing JINR infrastructure

• JupyterHUB

• EOS filesystem

• Sets of QA plots automatically displayed

• Custom code injection

• Cell structure with reprocess functionality

• Improvements integrated into
main C++ codebase

PERSPECTIVES, FUTURE PLAN

ENVIRONMENT for ALGORITHM IMPROVEMENT

Interactive
Development

Workflow
Example

MAJOR BENEFIT
On arrival of the data from real experiment, the optimized algorithm

improvement workflow with required infrastructure/environment is in place

Tailored simulation
data file

Reconstructions with
2 different modules

Automatic QA gallery
comparing 2 modules

Input modified hit
formula & reprocess

Try the change in main C++ codebase
inspect all QA’s for acceptance

FINAL REMARKS

SPECIFIC TARGETS

• Fast clusterhitfinder algorithm accuracy improvement
• Environment + workflows for fine tuning the clustering & hit extraction

ready by the time real data arrive

TEST DESIGN GUIDELINES

• maximum coverage with minimum tests
• risk based prioritization
• boundary cases coverage

Test environment is effective when absolute majority of defects is
caught by developers, not by users.

Thank You !

Q & A

SERVICE DESK for Questions

http://mpdroot.jinr.ru/q-a/

“User Involvement – critical project success factor”
CHAOS Report 2015, Standish Group

http://mpdroot.jinr.ru/q-a/

