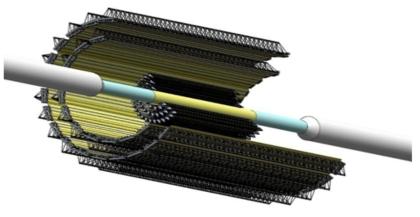
MPD Collaboration Meeting 18-20 April 2023

PWG5 (Heavy Flavour) status

Alexander Zinchenko

- 1. Scope of activities
- 2. Inner Tracking System (ITS) studies
- 3. Related Work Packages:
 - 1. ITS track reconstruction
 - 2. Exclusive D-meson decay selection
- 4. D+- semileptonic decays
- 5. Outlook

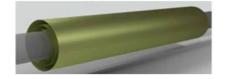

- Open charm studies: exclusive decays → Inner Tracking System (ITS) performance evaluation (synergy with ITS project) → dedicated track reconstruction methods ("Vector Finder")
- 2. Semi-leptonic decays and charmonia \rightarrow lepton (electron) tagging (synergy with dilepton studies) \rightarrow energy loss simulation and reconstruction in TPC for *dE/dx* PID

Reconstruction of charmed particles in Au+Au central collisions with MPD ITS3+TPC tracking system

Kondratev V., Murin Yu.

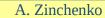
MPD WPG5

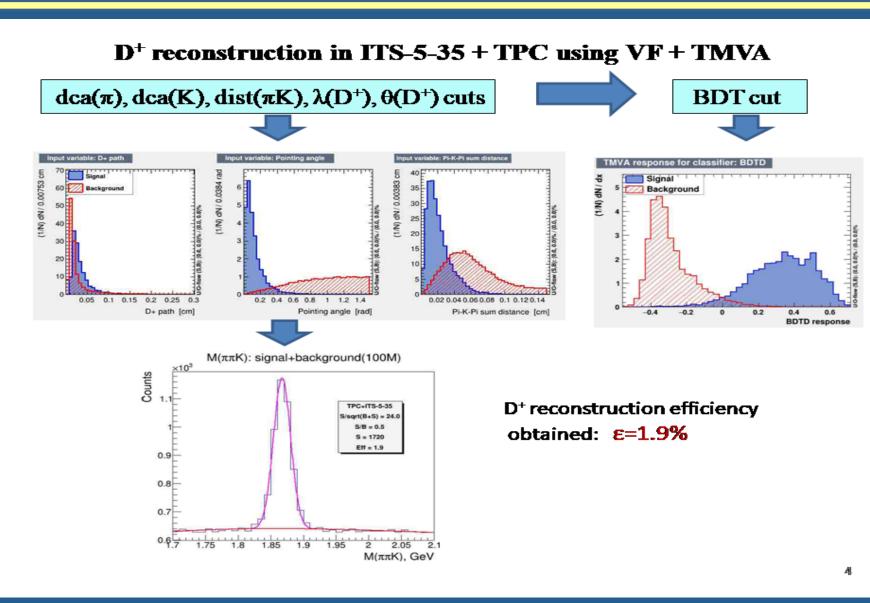
MPD ITS geometric models


Two ITS geometric models were used for simulation:

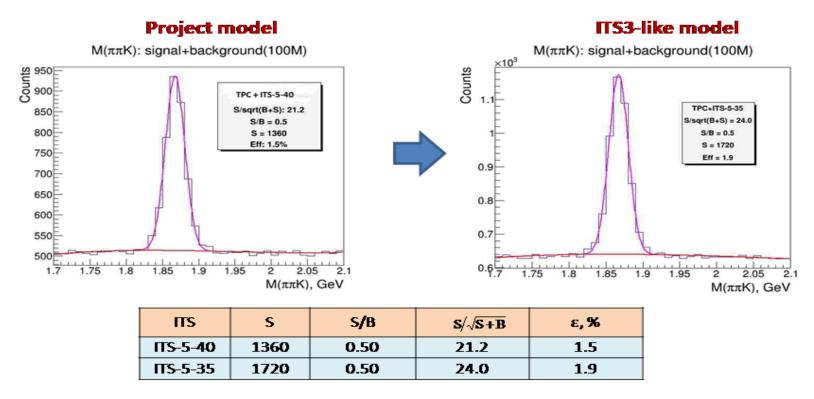

1) project model (ITS-5-40) with 5 layers consisting of ladders with standard MAPS

Sensitive area: 15×30 mm² Thickness: 50 μm Number of pixels: 512×1024 Pixel size: 28×28 μm².


- 2) ITS3-like model (ITS-5-35) with OB consisting of 2 layers of standard MAPS and IB consisting of 3 layers of bended staves of MAPS (15 um pitch) with large area and thickness of 30 μm
 - Size of bended MAPS:
 - 1 layer 280*56.5 mm²
 - 2 layer 280*75.5 mm²
 - 3 layer 280*94.0 mm²



Layer	No of MAPS	R _{min} , mm	R _{max} , mm	Length, mm	
1	24 *12	22.4	26.7	750	
2	24*22	40.7	45 .9	750	
3	24*32	5 9.8	65.1	750	
4	98*36	144_5	147.9	1526	
5	98*48	194.4	197.6	1526	


Layer	No of MAPS	R _{min} , mm	R _{mar} , mm	Length, mm	
1	4	18	18.03	560	
2	4	24	24.03	560	
3	4	30	30.03	560	
4	98*36	144_5	147_9	1526	
5	98*48	194.4	197.6	1526	

D⁺ reconstruction efficiency with two ITS models

The reconstruction efficiency increases by 25% when using ITS with an Internal Barrel built on the base of a new type of sensors (bended MAPS with large area)

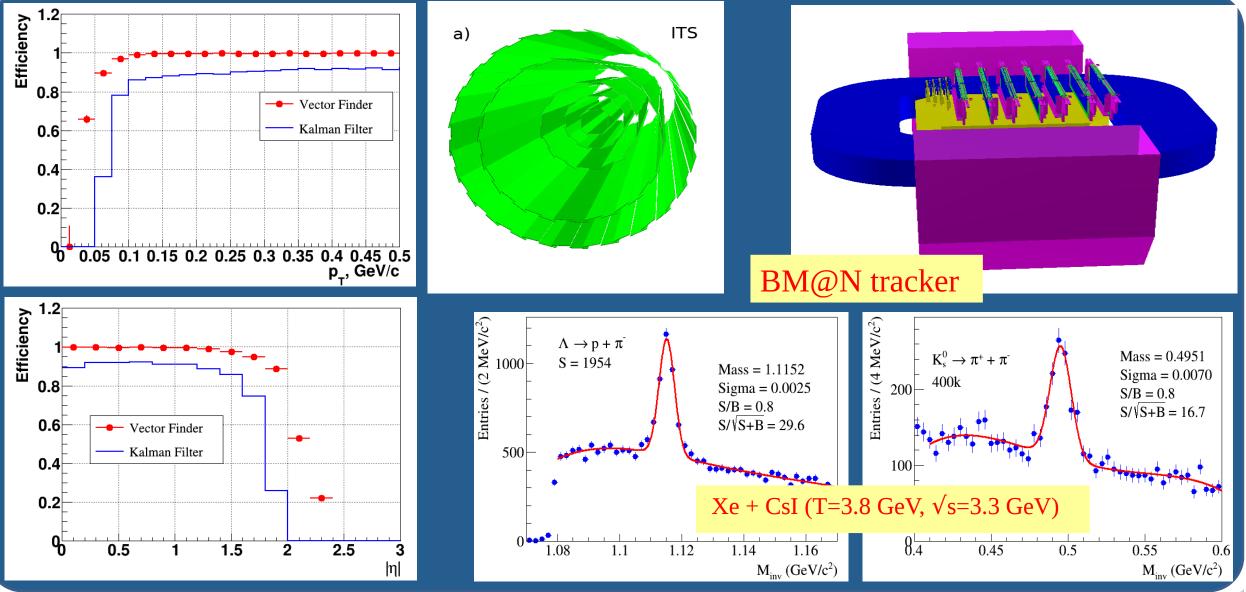
Published articles

1. V. P. Kondratyev, N. A. Maltsev and Yu. A. Murin. **Identification Capability of the Inner Tracking System for Detecting D Mesons at the NICA-MPD Facility.** Bulletin of the Russian Academy of Sciences: Physics, **2022**, Vol. 86, No. 8, pp. 1005–1009.

2. Zherebchevsky, V. I., Maltsev, N. A., Nesterov, D. G., Belokurova, S. N., Vechernin, V. V., Igolkin, S. N., Kondratiev, V. P., Lazareva, T. V., Prokofiev, N. A., Rakhmatullina, A. R. & Feofilov, G. A. New Technologies for the Vertex Detectors in the NICA

Collider Experiments. Bulletin of the Russian Academy of Sciences: Physics. **2022**, Vol.86,No. 8, pp. 948-955. RSF Grant for SpbU

Leader: Vladimir Zherebchevsky

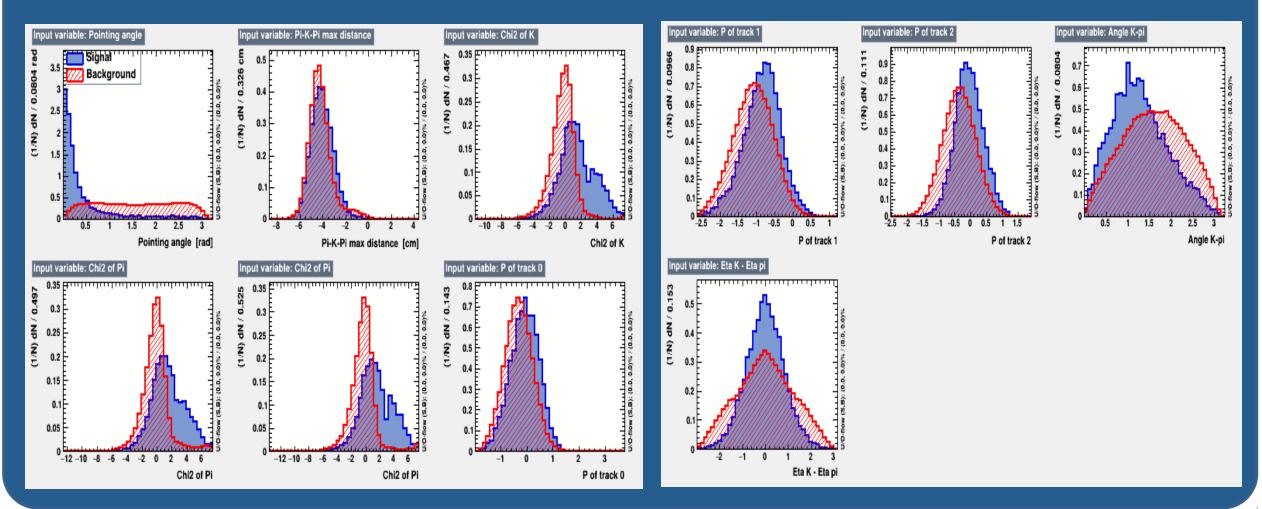

Superdense nuclear matter and methods of its study in experiments at the NICA accelerator-storage complex

2023-2025

6

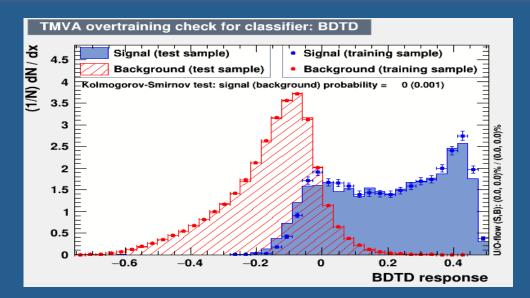
Track reconstruction: Vector Finder for ITS

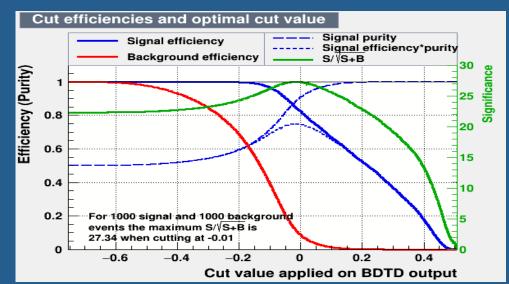
A. Zinchenko

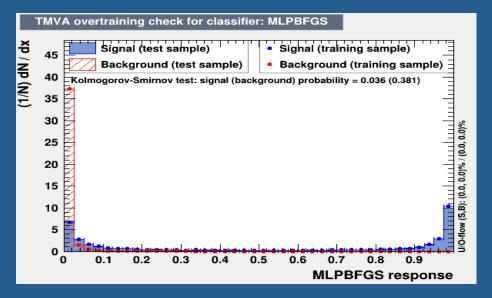

MPD collaboration meeting 20.04.2023

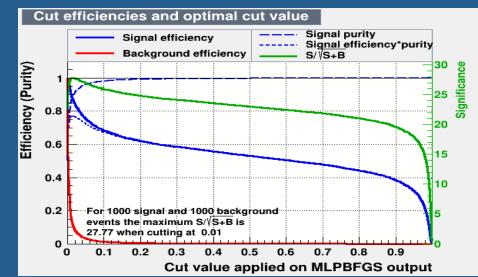
10

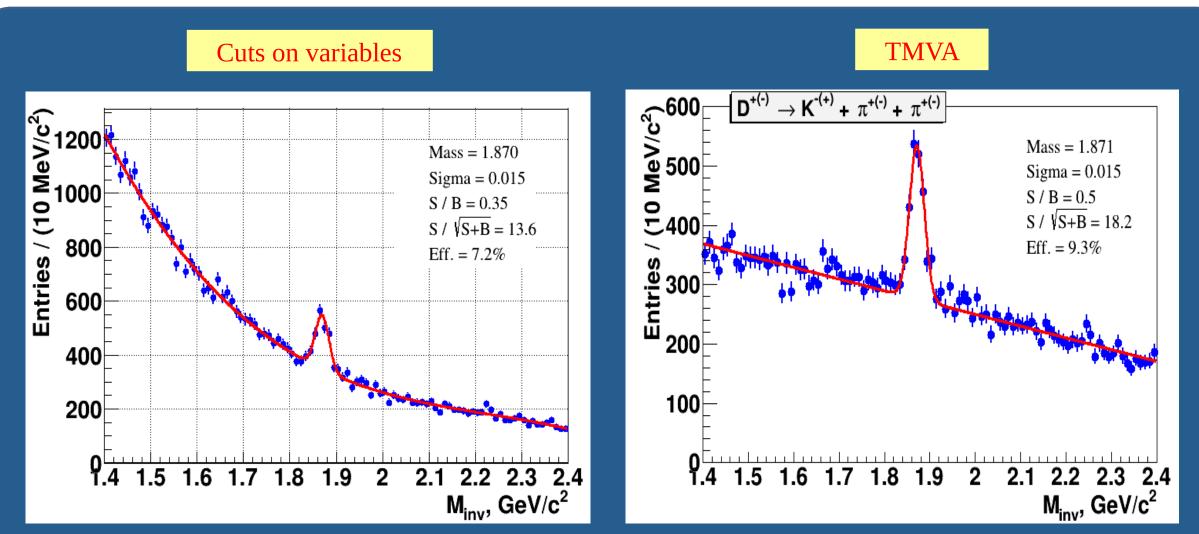
TMVA package: input variables


p+p @ 25 GeV Pythia8 (Equivalent statistics ~1B events) Thanks to V.Kondratev for sharing his experience with TMVA package usage




A. Zinchenko


TMVA package: network performance



A. Zinchenko

D⁺⁽⁻⁾ 3-prong decays

Semileptonic decays: inclusive electrons (83+% of ECAL modules will be ready)

C I C . (

D⁺ DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level				
Inclusive modes							
Γ_1	e ⁺ semileptonic	(16.07 ± 0.30)	%				
Γ2	μ^+ anything	(17.6 ± 3.2)	%				
Γ ₃	K ⁻ anything	(25.7 ± 1.4)	%				
Γ4	\overline{K}^0 anything $+ K^0$ anything	(61 ± 5)	%				
Γ ₅	K^+ anything	(5.9 ± 0.8)	%				
Γ ₆	$K^*(892)^-$ anything	(6 ± 5)	%				
Γ ₇	$\overline{K}^*(892)^0$ anything	(23 ± 5)	%				
Γ8	$K^*(892)^0$ anything	< 6.6	% CL=90%				
Γ9	η anything	(6.3 ± 0.7)	%				
Γ ₁₀	η' anything	(1.04 ± 0.18)	%				
Γ11	ϕ anything	(1.12 ± 0.04)	%				

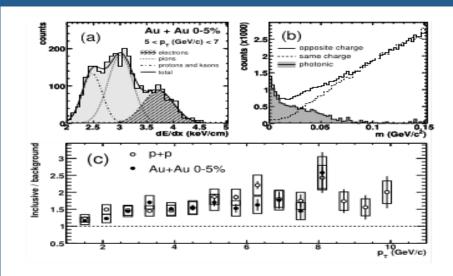
D⁰ DECAY MODES

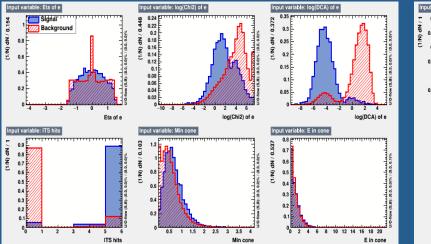
Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

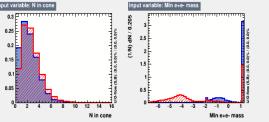
	Mode	de Fraction (Γ_i/Γ)		Scale factor/ Confidence level			
Topological modes							
Γ_1	0-prongs	[a]	(15	± 6)%		
Γ2	2-prongs		(71	± 6)%		
Γ ₃	4-prongs	[b]	(14.6	\pm 0.5) %		
Γ4	6-prongs	[c]	(6.5	\pm 1.3	$) imes 10^{-4}$		
Inclusive modes							
Γ ₅	e ⁺ anything	[d]	(6.49	\pm 0.11)%		
Г ₆	μ^+ anything		(6.8	\pm 0.6)%		
Γ ₇	K ⁻ anything		(54.7	\pm 2.8)%	S=1.3	
Γ ₈	\overline{K}^0 anything $+ K^0$ anything		(47	± 4)%		
Γ9	K ⁺ anything		(3.4	± 0.4)%		
Γ ₁₀	K*(892) [—] anything		(15	\pm 9) %		

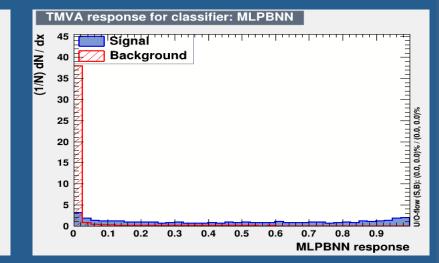
Transverse momentum and centrality dependence of high- p_T non-photonic electron suppression in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}$

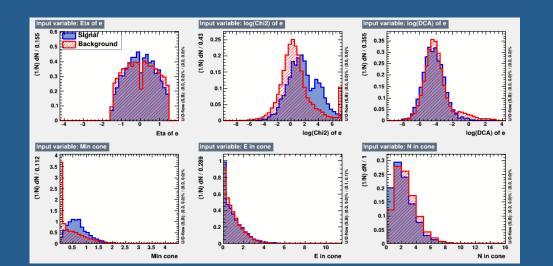
B.I. Abelev, ⁹ M.M. Aggarwal, ³⁰ Z. Ahammed, ⁴⁵ B.D. Anderson, ²⁰ D. Arkhipkin, ¹³ G.S. Averichev, ¹² Y. Bai, ²⁸ J. Balewski, ¹⁷ O. Barannikova, ⁹ L.S. Barnby, ² J. Baudot, ¹⁸ S. Baumgart, ⁵⁰ V.V. Belaga, ¹² A. Bellingeri-Laurikainen, ⁴⁰ R. Bellwied, ⁴⁸ F. Benedosso, ²⁸ R.R. Betts, ⁹ S. Bhardwaj, ³⁵ A. Bhasin, ¹⁹ A.K. Bhati, ³⁰ H. Bichsel, ⁴⁷ J. Bielcik, ⁵⁰ J. Bielcikova, ⁵⁰ L.C. Bland, ³ S.L. Blyth, ²² M. Bombara, ² B.E. Bonner, ³⁶ M. Botje, ²⁸

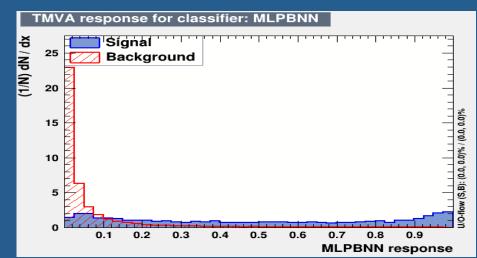


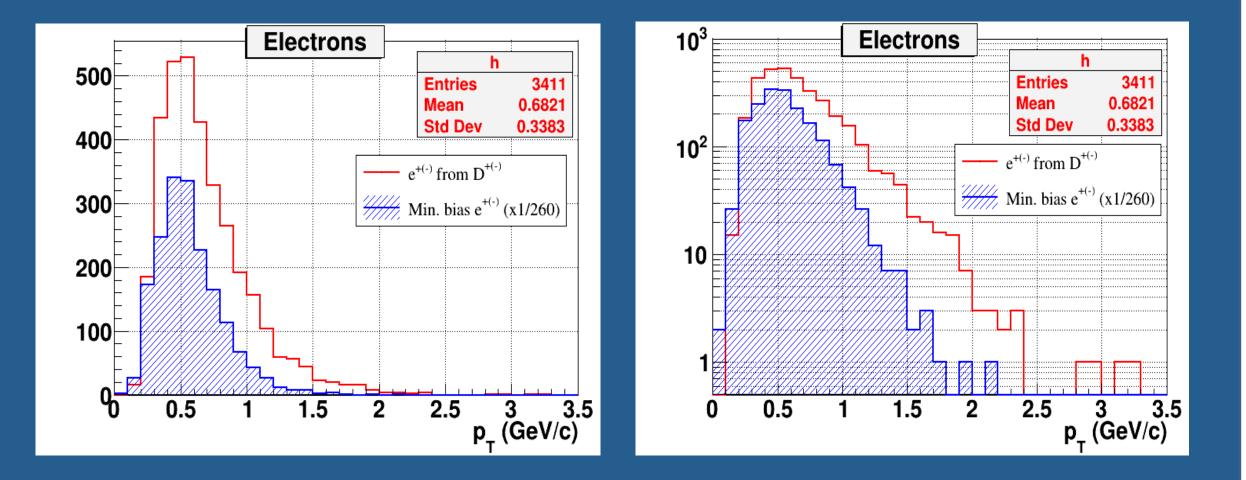

FIG. 1: (a) dE/dx projections for $5 < p_T(\text{GeV}/c) < 7$ in central Au+Au events after EMC and SMD cuts. The lines are Gaussian fits for p + K, π , and electron yields. (b) Invariant e^+e^- mass spectrum. (c) Ratio of inclusive and background electron yield vs. p_T for p+p and Au+Au collisions. Vertical bars are statistical errors, boxes are systematic uncertainties.


A. Zinchenko


Semileptonic decays: inclusive electrons - TMVA




p+p @ 25 GeV Pythia8 (Equivalent statistics ~500M events)



A. Zinchenko

Semileptonic decays: inclusive electrons

Further studies of the ITS performance for the open charm

Semileptonic decays

\succ J/ ψ to e+e-