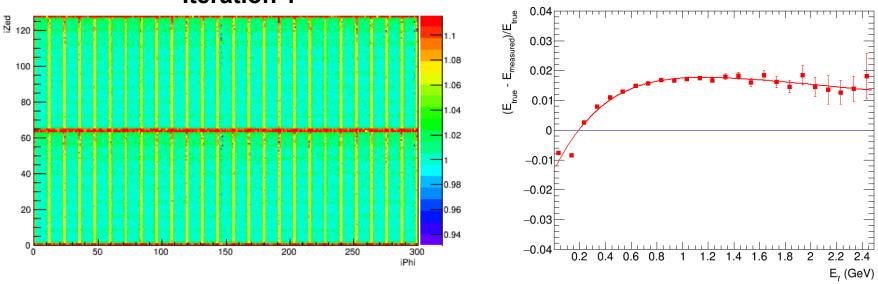


Nuclotron-based Ion Collider fAcility

PWG4 summary

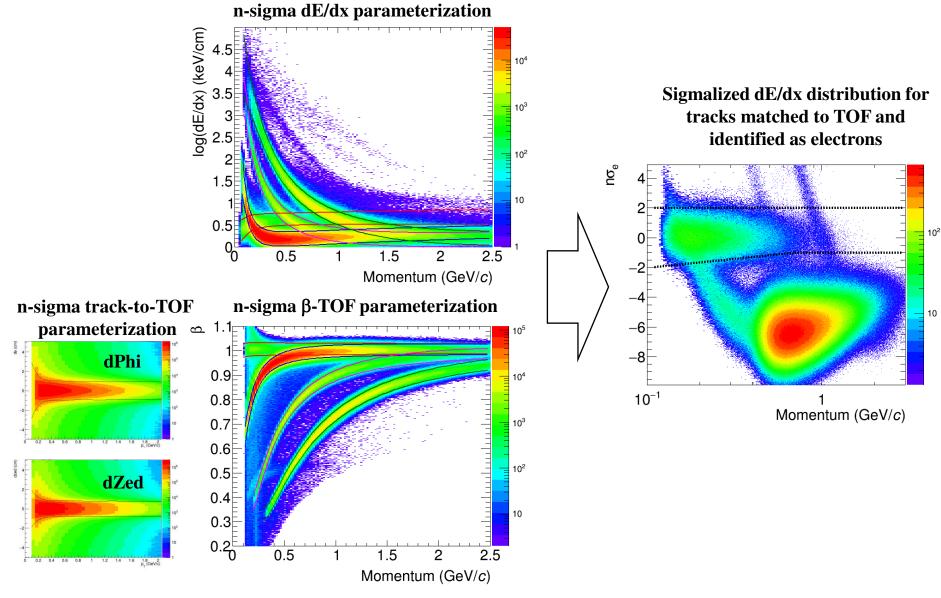
V. Riabov and C. Yang for the PWG4

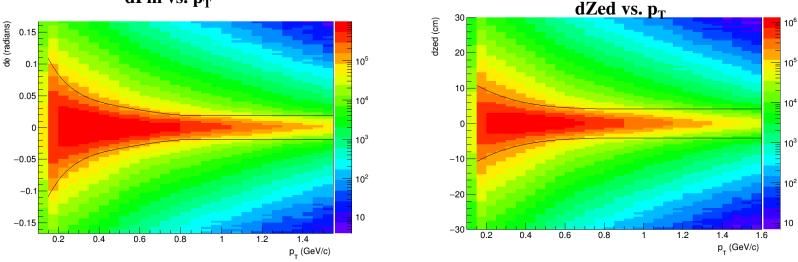


Status & structure

- PWG4 scope electromagnetic probes:
 - \checkmark electromagnetic calorimeter (ECAL) reconstruction software
 - \checkmark reconstruction of photons and neutral meson
 - ✓ dielectron continuum and LVMs
 - \checkmark estimation of direct photon yields and flow
- Conveners: V. Riabov, Chi Yang
- Talk outline: most recent results and activities

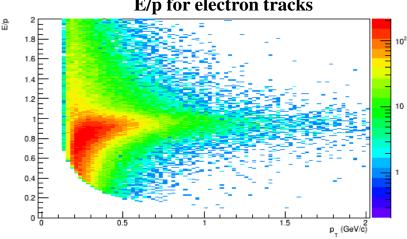
Ongoing activities


Calibration of ECAL: channel by channel + global energy scale


Iteration 1

- Corrections are evaluated as a ratio of generated to reconstructed cluster energies \rightarrow two iterations
- After tower-by-tower calibration the absolute scale variation is significantly reduced
- Reconstructed photon energy does not exactly match the generated one \rightarrow non-linearity of ~ 3%
- Non-linearity is parameterized as a function of reconstructed energy and thus reduced to $\sim 0.5\%$

• Optimization of eID-selections in the TPC and TOF

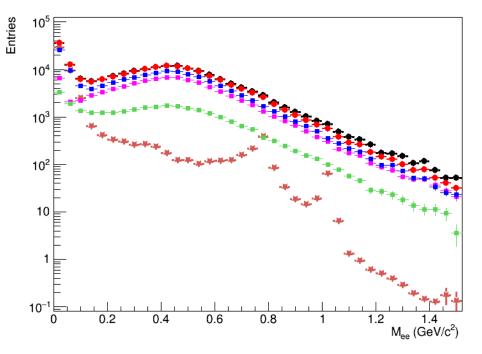


Optimization of eID selections in the ECAL

dPhi vs. p_T

- Track-to-cluster matching relates cluster information (E, tof, shower shape) to tracks
- Only tracks with $p_T > 150$ MeV/c effectively reach the ECAL

E/p for electron tracks


- ECAL e-ID for 2σ -matched tracks:
 - Signalized time-of-flight ($\delta \sim 500 \text{ ps}$) \checkmark ✓ E/p ~ 1
- Turns on at $p_T > 200 \text{ MeV/c}$
- TOF ($[-3\sigma, 2\sigma]$) & E/P ($[-3\sigma, 2\sigma]$) cuts provide high eID efficiency in a wide p_T range

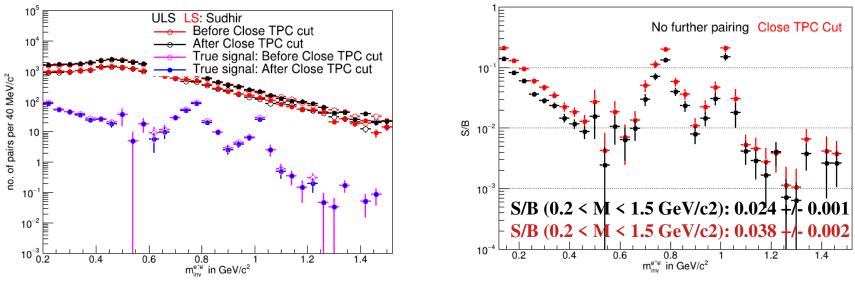
v. Mayov and C. rang, PWG-4 summary

- Preparation of analysis Wagons for the Train
- Test Wagon for $\pi^0/\eta \to \gamma\gamma$, $\pi^0/\eta \to \gamma(e^+e^-)$, $\pi^0/\eta \to (e^+e^-)(e^+e^-)$ has been created, committed to MpdRoot (mpdroot/physics/photons)
- Analyses in the pipeline:
 - $\checkmark \quad \pi^{0}/\eta \to \gamma\gamma, \, \pi^{0}/\eta \to \gamma(e^{+}e^{-}), \, \pi^{0}/\eta \to (e^{+}e^{-})(e^{+}e^{-})$ $\checkmark \quad K_{s} \to \pi^{0}\pi^{0}$
 - $\checkmark \quad \omega \to \pi^0 \gamma, \, \omega / \eta \to \pi^0 \pi^+ \pi$
 - $\checkmark \quad \eta' \to \eta \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$
 - $\checkmark \quad \Sigma^0 \to \Lambda \gamma, \Sigma^0 \to \Lambda(e^+e^-), \Sigma^+ \to p\pi^0$
 - \checkmark inclusive and direct photons
 - ✓ dielectron continuum and LVMs
 - ✓ single e_{HF}
- Study of analyses with full/reduced magnetic field
- Many vacant tasks \rightarrow please consider to join the efforts !!!

Advances in dielectron studies

Challenges

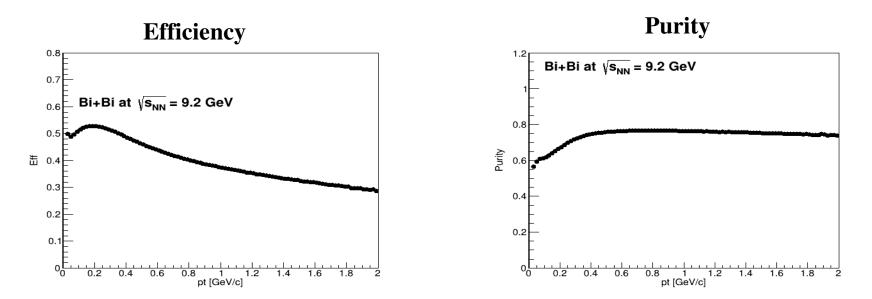
Dielectron continuum (TPC-TOF eID) Dielectron continuum (perfect eID) Pairs with π^0 Dalitz electron(s) Pairs with conversion electron(s) Pairs with η Dalitz electron(s) True e⁺e⁻ signal to be measured


- Good e-ID and e-purity
- Huge combinatorial background from pairs where at least one of the electrons is from Dalitz decays or conversion
- Identification of Dalitz and conversion electrons is complicated:
 - ✓ with current track reconstruction algorithm, low p_T tracks with $p_T < 30-50$ MeV/c are not reconstructed → major source of CB
 - ✓ tracks with $p_T \le 100$ MeV/c do not reach TOF → not fully identified
- Task: develop procedures for more efficient identification of conversion and Dalitz electrons

Strategy

- Latest Request 25 mass production for 50 M events (UrQMD)
- e⁺e⁻ correlated signal is scaled to PHSD predictions
- Use three types of e-track selection: "tight", "loose1" and "loose2"
- "Tight" cuts for better e-purity:
 - ✓ $p_T > 100 \text{ MeV/c}$
 - ✓ DCA x,y,z $\leq 2\sigma$
 - $\checkmark \text{ Nhits > 39}$
 - ✓ |η| < 0.3
 - ✓ TPC n- σ e-ID: [-2, 2] at p = 0; [-1, 2] at p > 800 MeV/c
 - ✓ TPC 2- σ veto for π -ID
 - ✓ TOF 2- σ matching + TOF 2- σ e-ID
 - ✓ EMCAL 2- σ matching + EMCAL 2- σ e-ID (optional)
 - "Loose 1" cuts for reasonable (subject to optimization) e-purity:
 - ✓ $p_T > 50 \text{ MeV/c}$
 - ✓ Nhits > 10
 - ✓ |η| < 2.5
 - ✓ TPC 2- σ e-ID
 - ✓ TOF 2- σ e-ID if track is 2- σ matched to TOF
- "Loose 2" cuts for reasonable (subject to optimization) e-purity:
 - ✓ $p_T > 50 \text{ MeV/c}$
 - ✓ DCA x,y,z \leq 3.5 σ
 - ✓ Nhits > 10
 - ✓ |η| < 0.3
 - ✓ TPC 2- σ e-ID
 - ✓ TOF 2- σ e-ID if track is 2- σ matched to TOF

Strategy


- Combine "tight" + "loose 1" oppositely charged pairs, check for consistency with conversion pair:
 - ✓ V0 topology
 - \checkmark distance between tracks in the SV + Chi2
 - ✓ pointing angle
 - ✓ pair mass
 - ✓ PV-to-SV distance
- If a pair is consistent with conversion \rightarrow tag both tracks and reject
- Combine "tight" + "loose 2" oppositely charged pairs, check for consistency with π⁰ Dalitz:
 ✓ pair mass < 100-150 MeV/c²
- If a pair is consistent with π^0 Dalitz \rightarrow tag both tracks and reject
- Pair all remaining "tight" + "tight" oppositely charged pairs to build the foreground invariant mass distribution

V. Riabov and C. Yang, PWG-4 summary

Current efforts

- Identification of π^0 Dalitz decays by pairing ECAL photons with TPC-TOF electrons
- For true Dalitz decays the invariant mass of γe^+ and γe^- pairs is a narrow peak with $M_{inv} < 140 \text{ MeV/c}^2$
- Photon identification in the ECAL:
 - ✓ Chi2 \leq 4
 - ✓ Tcl ≤ 2 ns.
 - ✓ Charge Particle veto
 - ✓ E > 50 MeV.
 - ✓ number of towers > 2

• Tests with the reduced-field mass production

Summary

- PWG4 is preparing for analysis of new mass productions
- Advances in dielectron and LVM analyses
- Many vacant tasks, extra man power is needed
- Contact conveners if you wish to join or have any questions

BACKUP