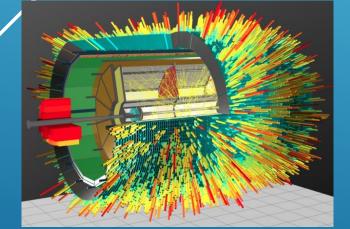


MPD TPC STATUS (18.04.2023)

TPC:

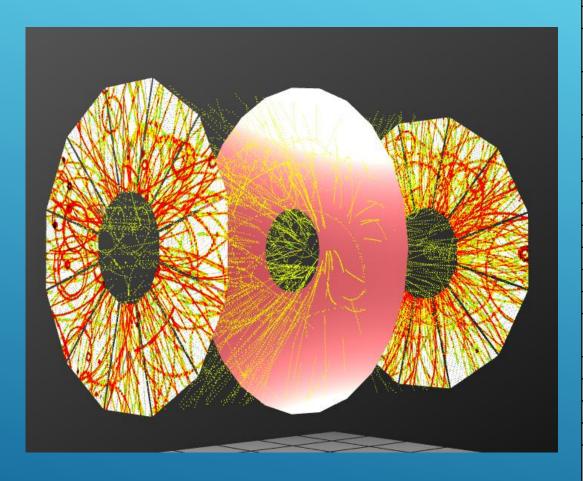
• vessel assembly, ROC chambers, gating grid system

Sub-systems:


- Electronics
- LV+HV system (CAEN)
- Gas and cooling systems
- Laser calibration

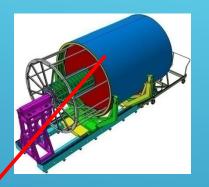
Integration TPC to MPD

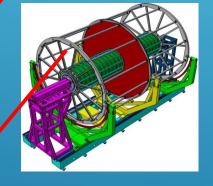
- Electronics platform
- Cabling and piping
- Installation TPC to MPD

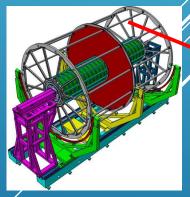

Time schedule

Presented by S.Movchan

MPD TPC MAIN PARAMETERS

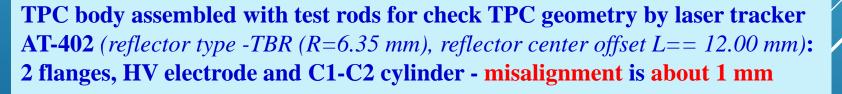

Item	Dimension
Length of the TPC	340cm
Outer radius of vessel	140cm
Inner radius of vessel	27 cm
Outer radius of the drift volume	133cm
Inner radius of the drift volume	34cm
Length of the drift volume	170cm (of each half)
HV electrode	Membrane at the center of the TPC
Electric field strength	~140V/cm;
Magnetic field strength	0.5 Tesla
Drift gas	90% Ar+10% Methane, Atmospheric pres. + 2 mbar
Gas amplification factor	~ 104
Drift velocity	5.45 cm/μs;
Drift time	< 30μs;
Temperature stability	< 0.5°C
Number of readout chambers	24 (12 per each end-plate)
Segmentation in φ	30°
Pad size	5x12mm ² and 5x18mm ²
Number of pads	95232
Pad raw numbers	53
Pad numbers after zero suppression	< 10%
Maximal event rate	< 7 kHz (Lum. 10 ²⁷)
Electronics shaping time	~180 ns (FWHM)
Signal-to-noise ratio	30:1
Signal dynamical range	10 bits
Sampling rate	10 MHz
Sampling depth	310 time buckets


TPC VESSEL ASSEMBLY



Service wheel with thermal panels (12pc)

Both service wheels - assembled



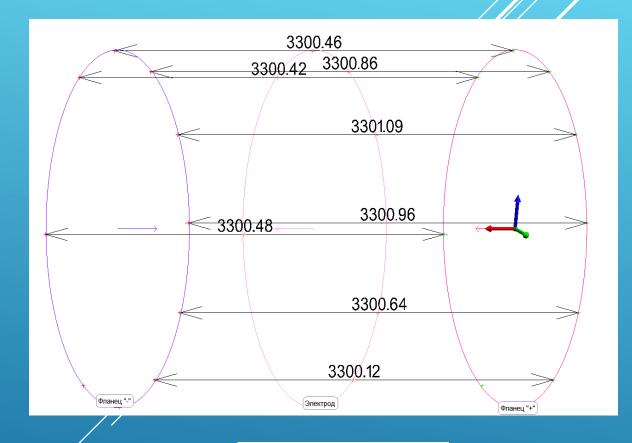
VIVO X50 Pro Ties 2021, No.51


Rods D=40 mm (24 pc) reassembled - ready Rods D=60 mm (24 pc) – assembling in progress, ready - June 2023

TPC VESSEL ASSEMBLING

Goal – improve misalignment by factor x2

TPC VESSEL ASSEMBLING


Flanges and HV electrode unflatness

Фланец "-" Электрод

Flanges unflatness – about 0.5 mm

HV electrode unflatness – about 0.7 mm

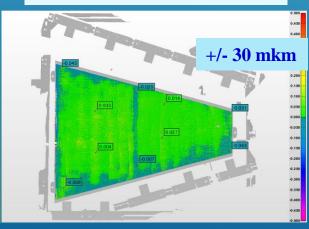
Flange to flange distance

L=(3300.5 +/-0.5) mm (nominal – 3300.0 mm)

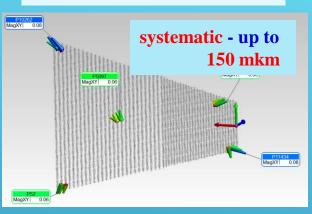
ROC CHAMBERS AND GATING GRID SYSTEM (GGS): STATUS

Test set up for ROC certification

24 pc ROCs – tested


24 pc serial ROCs + 4 spare – READY!

Test set up for pads calibration



Leica MS60 - 1 second resolution Leica AT960 +/-10 mkm +5 mkm/m Leica AT403 +/-15 mkm +6 mkm/m Scanner AS1+AT960 +/-50 mkm

Pad plane unflatness: example

Check pads geometry

Full set of ROC alignment marks

Summary:

- measurements to do for all ROCs
- calibration of ROC marks and 3968 pads respect to ROC "reference hole" - in progress

ROC gating grid system: test set up

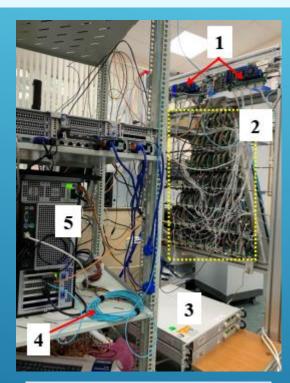
Pulse rise time - 500 ns, OK!

Mass-production – in progress Delivery to JINR – Sept 2023

Production version of the FE card:

FECs to...

FECs in...

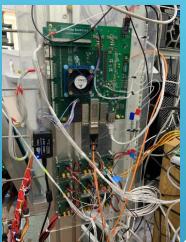

N=967 pc (65%)

15 ROCs chambers can be completed (from 24 ROCs)

TPC SUB-SYSTEMS: ELECTRONICS

DAQ prototype:

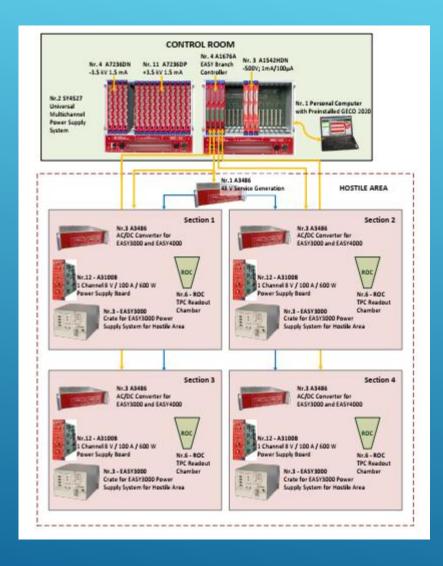
62 FE cards, RCU prototypes, ROC, 2pc LVDBs, server interface board - tests ongoing



- 1. RCU prototypes
- 2. FECs on the ROC (62 pc)
- 3. LV power supply
- 4. DCU card connected with RCUs via fibers
- 5. Readout server

LVN9 stabilizer

FE radiators (water cooling)



60 pc LVN9 were send back to Minsk:

- modification connection of power cables to LVN9 in progress
- modification of LVN9 output voltages to FECs in progress
- test of LVN9 with cooling radiator $\,$ under full load (analog 70 A, digital 50 A) in progress
 - 967 FECs of 1500 were produced.
 - Tests of the FEC basic functionality were shown the target characteristics (noise and stability).
 - Testing of the readout system for one **ROC** is ongoing.

TPC SUB-SYSTEMS: LV+HV (CAEN)

LV&HV system based on CAEN rad. hard design:

(up to 2000 Gauss and 15 kRad)

- power converters A3486 AC/DC (380 V -> 48 V) -15+3 pc

- EASY3000 crates

- 14+2 pc

- LV module - A3100B (8V/100A)

- 48+8 pc

- LV module - A3100HBP (14V/50A)

- 6 +2 pc

- HV modules -A3540P (+4kV/1mA)

- 8+3 pc

- HV modules -A3540N (- 4kV/1mA)

- 2+2 pc

Status:

LV+HV system: JINR-CAEN contract signed

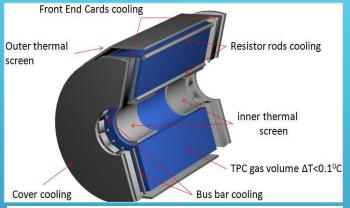
Expected delivery date to JINR: August 2023

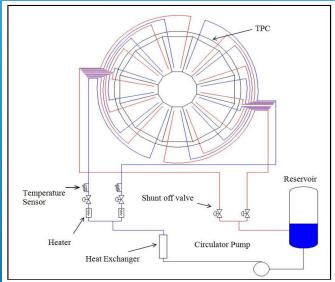
test system - tests ongoing

LV cables (halogen free, low smoke):

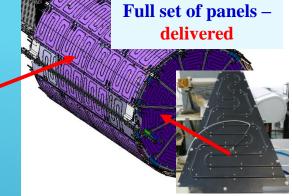
S=50 mm2 – delivered

HV cables - ordered

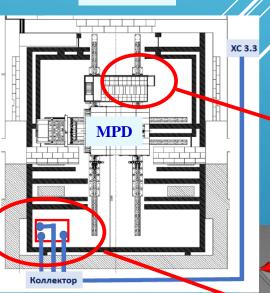


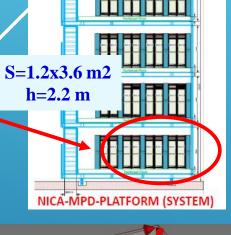

TPC SUB-SYSTEMS: GAS AND COOLING

Gas system (Ar/CH4, 90:10)



Water cooling system





S=4x5 m2 h=2.5 m

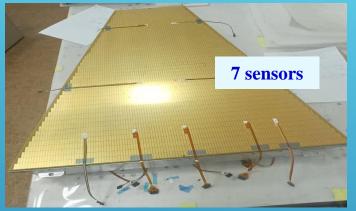
Tests - in progress (H20 and Q2 sensors are replaced) contract JINR-INP BSU (Minsk) – in progress delivery – 30 September 2023 operation under manual control – during beam test 2024 fully automatic control – 30 September 2024

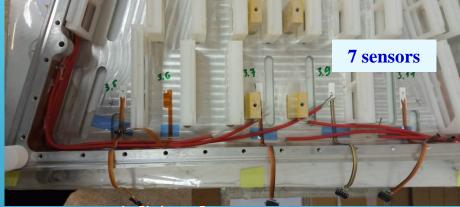
Bottom cooling plates

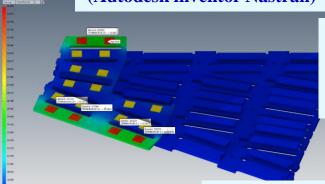
Set of top cooling plates

COOLING PROTOTYPE

T sensor based on Pt100

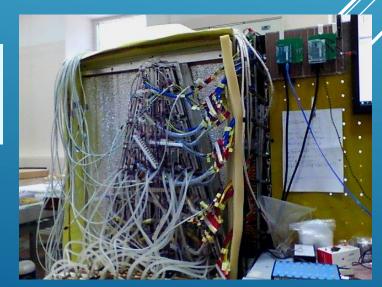






Cu tube Din - 3.16 mm Plates thickness - (4+4) мм

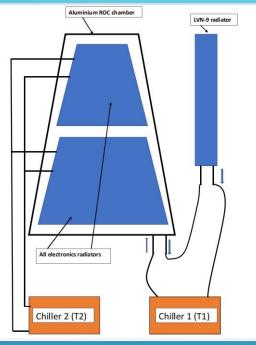
Cooling simulation (Autodesk inventor Nastran)

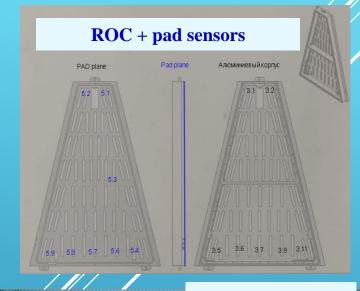



Electronics water: T=19 C

ROC water: T=22 C

Air: T=23 C

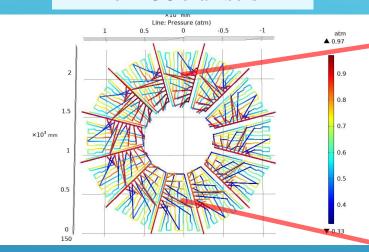




COOLING PROTOTYPE: RESULTS

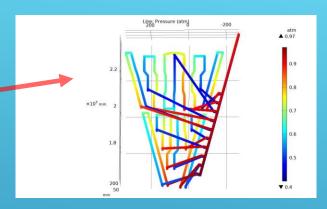
Set up

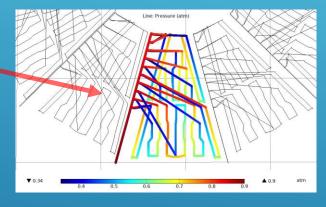
LV power



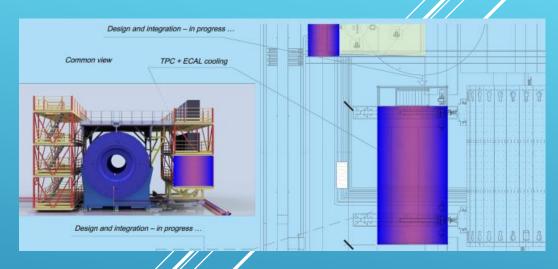
Air: T=23 degree (C)

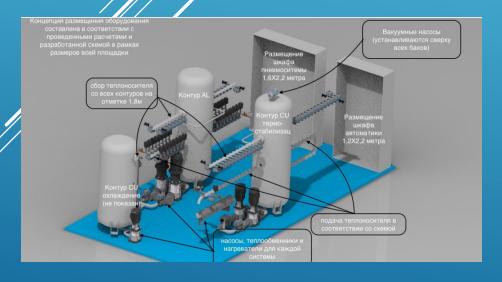
Water FECs T (C)	Water ROC T(C)		FPGAs dT (C)		ROC dT (C)	T Min (C)	T Max (C)	Comments
17	25	3÷5	7	0.27	0.6	18	33	
19	22	3÷5	7	< 0.2	0.2	20	35	optimum


SERIAL COOLING SYSTEM (INP BSU, MINSK): STATUS


Hydrodynamic pressure drop for ROC chambers

 $dP \le 0.5$ atm



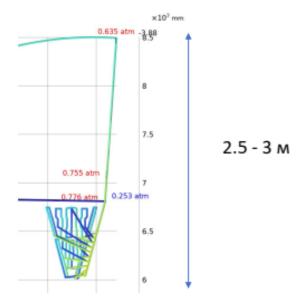


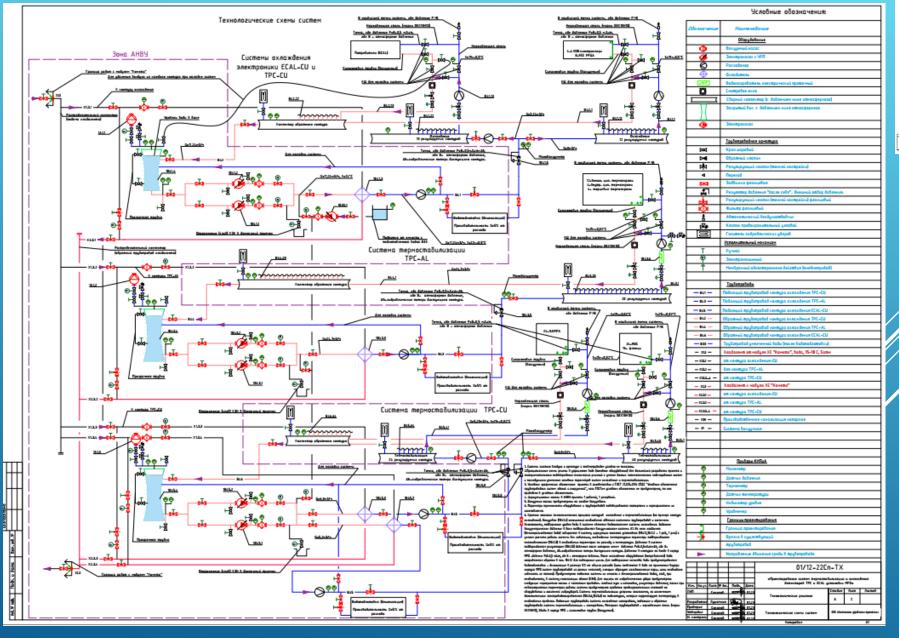
Systems parameters optimization by calculations – in progress

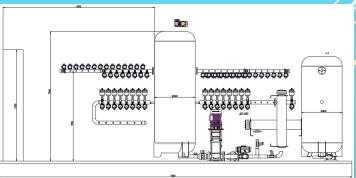
NEW cooling system position -> 2-nd floor of a additional platform - design and optimization in progress

Water velocity: (1.5-2.5) m/s

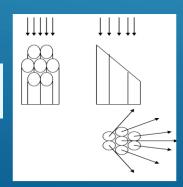
SERIAL COOLING SYSTEM: OPTIMIZATION


Влияние положения бака в системе на давление

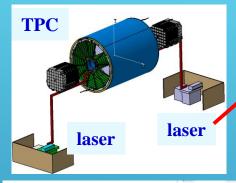

Изменение положения коллектора позволило подвести магистрали в верхние окна MPD с более низким давлением 0.54 атм вместо 0.75.
Это поможет сохранить режим


Это поможет сохранить режим leakless, поскольку к давлению в верхних окнах MPD в ТРС прибавится около 3 м водного столба.

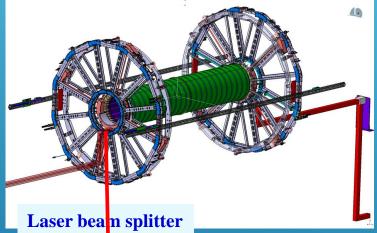
SERIAL COOLING SYSTEM: STATUS



	Đ.	300	98	Обличение	'	/bredsie	Koe	/pues					
	E	Н				Долументаци	g.						
	43			PLATFORM_COOL C	5	Сборочный чертел							
+	ŧ	H	_			Сборочные еди							
l	\vdash	Н	_			COOPSTAR EAR	1842						
	44	Н	ı	_COLLECTOR_AL_SB	!	Коппектор AL	2						
	44	П	2	_COLLECTOR_AL_SB		Konnextop_AL	2						
1	44	Г	3	_COLLECTOR_CU-H_	ı	Коппектор напори	iyê l						
l	44		4	_COLLECTOR_CU_SB	1	Коппектор CU_LP	2						
l	44	Г	5	_COLLECTOR_CU_SB	-P	Коппектор напори	iuž I						
_	44		6	_TANK_800		Бак	1						
	44	L	7	_TANK_1200		Бак	2						
Γ	†					Детали							
	1	Н	8	_2_D_ANGLE		Тройния	3						
1	44	Н	9	_2_D_DN32		Тройния	2						
╄	44	Н	10	_3_0		Тройния	3						
	44	Н	11	_3_D_T		Тройния	- 1						
	44	Н	12	_ELECTICAL_CAB		Тройния	1						
╁	44		13	_PNEUMOAUTOMATIC		Тройния	1						
	F	L	_										
	1	L											
		Т	Т	Phys. Mh. Am	PLATFORM_COOL								
Ī	4	Ï	Π,	televal MAZ	Сборка (бодяной системы	Am Am 0 1	Arms 6					
	Ĕ	-	Ħ			000 Typšo	00 ТурбоЭнерджі						

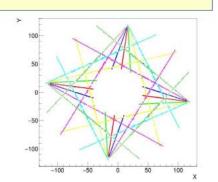

Scheme for ½ TPC

Laser "planes" - 4
Micro-mirrors bundles per plane - 4
Beams from micro-mirrors bundle - 7
Laser "tracks" (N =112x2) - 224


micro-mirror bundles

TPC SUB-SYSTEMS: LASER CALIBRATION

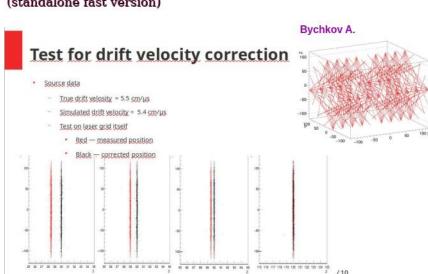
Laser beam monitor


TPC laser calibration for electron drift velocity (root version)

Space-charge distortion in TPC volume change the electron drift velocity (\leq 1sec.)—corrections are needed.

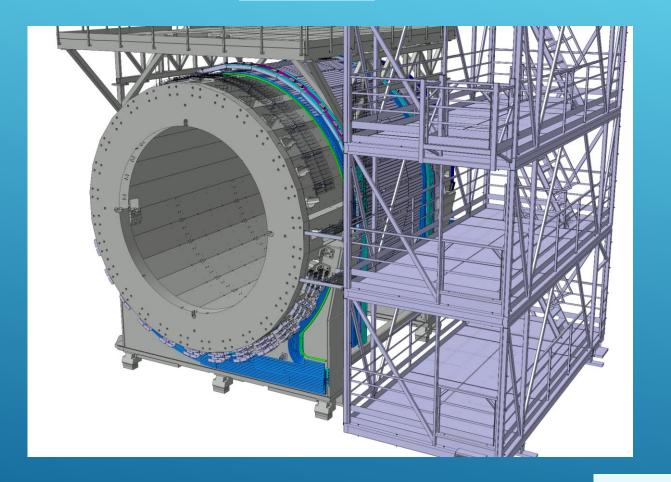
Bychkov A.

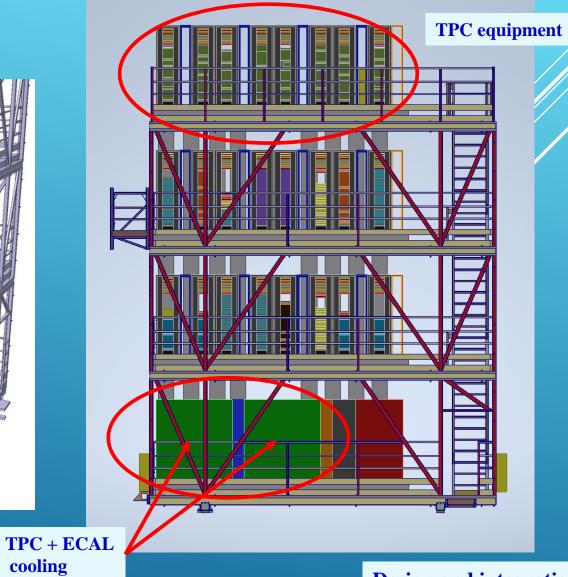
Reasons:


- Variation in drift velocity caused by gas mixture, temperature, pressure and electric field variation
- Radial inhomogenities of magnetic and electric field.
- Space charge distortions due to high multiplicity in nucleus-nucleus collisions.
- TPC misalignment in the magnet and existence of the global E X B effect.

Reconstructed hits of the laser grids

TPC electron drift velocity calibration


(standalone fast version)

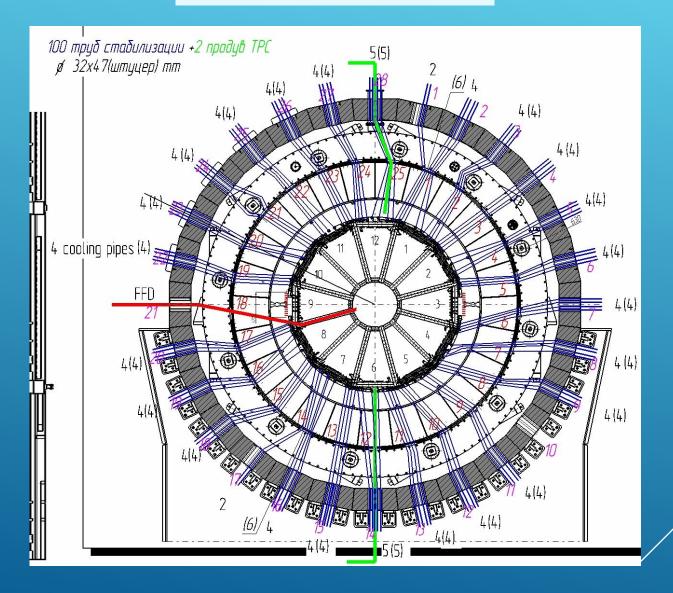


NICA-MPD-PLATFORM (NMP)

cooling

Common view

Design and integration – in progress ...

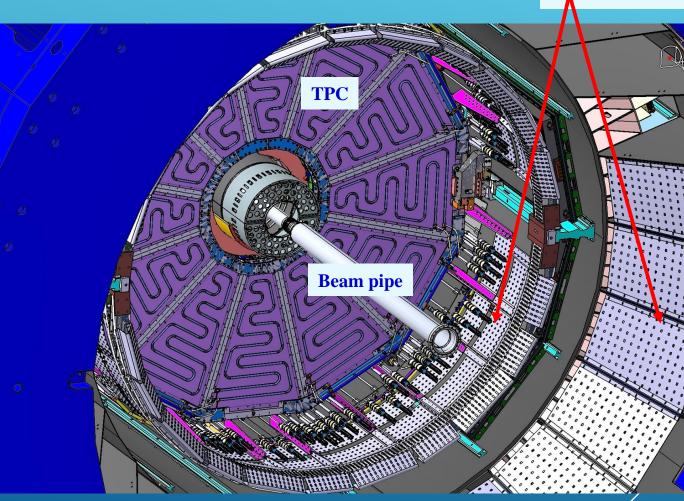

MPD ELECTRONIC PLATFORM TPC equipment in racks on the 4th floor

	F4-R1 mesuik		F4-R2 LV		F4-R3 LV		F4-R4		FH-RS		F4-RS (LV)		F4-87 (LV)		F4-RE (spassuil)
47		47		47		47		47		47		47		47	
46	Cable organiser	-46	Cable organizer	46	Cable organizer	46		46		46	Cable organizer	46	Cable organizer	46	Cable organizer
45	Patch Panel Fiber	45	Patch Panel Fiber	45	Patch Panel Riber	45	Patch Panel Fiber	45	Patch Panel Riber	45	Patch Panel Fiber	45	Patch Panel Fiber	45	Patch Panel Fiber
44	Anuba 3810M 24G (14GW) Gkg	44	Aruba 3810M 24G (146W) 6kg	44	Aruba 3810M 24G (146W) 6kg	44	Aruba 3810M 24G (146W) 6kg	44	Aruba 3810M 24G (146W) 6kg	44	Aruba 3810M 24G (146W) 6kg	44	Aruba 3810M 24G (146W) 6kg	44 6	Anuba 3810M 24G (146W) 6kg
43		41		43		43		43		43		41		43	
42	Greena GATE	42	A3486 Nrt (380VAC-40VDC)	42	A3486 No4 (380VAC-40VDC)	42	A3486 Nr7 (380VAC-40VDC)	42	A3486 Nv8 (380VAC-40VDC)	42	A3486 Nr9 (380VAC-40VDC)	42	A3486 Nx12 (380VAC-40VDC)	42	A3486 Nr15 (380VAC-40VDC)
41	40W x 12 xawep = 500W	41		41	3kW, max4kW 380V/15A		Потание SC для всех крейтов EASY		1kW, max.4kW 1801/15A 10kg	41		41		41	max,15kW 38Dk/15A
- 11				- 1		- 1			Retaine-68V 2x spelitos EASY	_		- 1	200,000,000	- 11	
40	220V/10A	40		40	30kg		3804/15A, 3 kW (max 4 kW), 30kg	40		40		40		40	30/g
39	20kg	39		39		39		39		39		39		39	
38		31	Crate EASY 3000 Nrs	38	Crate EASY 3000 Ne4	36	Crate EASY 3000 Nets (HV)	38	Crate EASY 3000 Nedle (HV)	38	Crate EASY 3000 Neg	38	Crate EASY 3000 Net2	38	Craste EASY 3000 NetS
							romanoe + 48V Seperce of A3486		romanue + 48V Seperce of A3486	\neg		\neg			
37	CHCTHAID GATE		romanue + 45V Seperce of A2456		nutaxus + 48V Seperce of A3486	37		37			nutawae + 45V Seperca or A3486		nutawe + 45V Seperce of A3496		nutaxue + 48V Seperca or A3486
36	40W x 12 xawep = 500W	36		36		16		16		16		36		16	
15	220V/10A 20kg	35		35 34	42.5kg	35 34		35		35 34		35		15 14	40.5kg
33		11		11	10.00	11		11		13		11		11	4.14
32		12		32		32		32		32		32		32	
31	BOHT, FORMERS	31		31	BRIT. BRITISH	31	BOYT, BOYEST	31	BENT, SONOAL	31	BOHT, FERMINA	31		31	BEHT, RIHERIN
30		30		30		30		30		30		30		30	
29	Cacrema SPECTRA	29	A3486 Nr2 (380VAC-40VDC)	29	A3486 NrS (380VAC-40VDC)	29	Crate SC gas LVN9	29	Crate SH4527 (HV)	29	A3496 N+10 (380VAC-40VDC)	29	A3486 Nx13 (380VAC-40VDC)	29	CHCTHMI GATE
29	1050W	21		28	3kW, max.4kW 380V/15A	25		26		28		28		28	40W x 12 xawep = 500W
27	220V/15A	27	30kg	27	30kg	27	220x/30A	27		27	30kg	27	30 g	27	220V/10A
							_		(8 wagyne x 13ch#96ch+3.5kV/1mA						
26	50·g	26		26		26	G _E	26		26		26		26	20 g
25		25	Crate EASY 3000 No2	25	Crate EASY 3000 NrS	25	(система медленного контроля	25	2 maggan x 13ch = 24ch-500i/(1mA)	25	Crate EASY 3000 Net0	25	Crate EASY 3000 Net3	25	
24			numarose + 46V Sepence on A2486		питания + 450/ берется от А3486	24		24			nutawe + 48V Seperce of A3486		питание + 48V берется от А3486	24	GICTEMS GATE
23		21		23		23		23		23		23		23	40W x 12 xaweg = \$00W
22	BOHT, PERHODS	22	,	22		22	Crate VMEB100/11	22	sert, tareas	22		22		22	220V/10A
21		21	42.5kg	21	42.5kg	21	1.1kW, max. 2.5kW	21		21	42.5kg	21	42.5kg	21	20kg
20	Мадуль термаметрии NI	20		20		20	230k/15A	20	Crate VME8300/11	20		20		20	
19	200W	19		19		19		19		19		19		19	
18	220V	16	BENT, SENENS	16	BRIT. BRITIS	15		16		18	BOHT, REHILDS	16		18	BEHT, REHERL
17	Skg	17		17		17		17	30kg	17		17		17	
16		16	A3486 Nr3 (380VAC-40VDC)	16	A3486 N+6 (380VAC-40VDC)	16		16		16	A3486 Nr11 (380VAC-40VDC)	16	A3486 Nx14 (380VAC-40VDC)	16	Spanic Cucrowa SPECTRA
15		15		15	3kW, max.4kW 380V/15A	15	BONT, REMARK	15		15		15		15	500W
14000	C Laser system synchronization	14		14	30iz	14		7.0		14	33kg	14		14	220V/15A
13	200W, 220V	13		13	and .	13		13	SENT. SAMON	13		13		13	50kg
12	Skg	12		12	Crate EASY 3000 Ne6	12		12		12	Crate EASY 3000 Net11	12		12	
11		11	nutranee + 46V Sepence of A3466	11	nutawwe + 48V Seperce on A3486	11	230k/30A	11	Crate NBM	11	nutarue + 45V Sepetta of A3486	- 11	nutarue + 45V Sepetca of A3486	11	
10	TPC HV membrane - 30kV	10		10		10	30kg	10		10		10		10	
9	YOW	9		9		9		9		9		9		9	BEHT, REHERL
-	220V	- 1	42.5kg	- 1	42.5kg				30kg		42.5kg	- 1	42.5kg	- 1	
7	7kg	7		7		7	BOOT, SEARCH	7		7		7		7	Модуль термометрии М
6		- 6		6		6		6		6		6		6	2000 N
- 5			BENT, TENNES	5	BOHT, ROMAN	5		5	BEST, SERVICE	5	BOOK, PERSONAL	5	BOHT, FRIHERI	5	220 V
- 5		- 4		4		4		- 4		4		- 4		4	Sig
- 2		- 1		- 4		- 1		- 1		- 1		- 1			
1				- 1		- 1		1		1		_ 1			

TPC CABLING AND PIPING

W side: cooling and gas pipes scheme

TPC list of cables and pipes


		List of cables and pipes														
			14	12	10		6	1.4	2	11	1.8	1.5	1 7	9	11	13
	Purpose	Diameter, mm	Qty	Qtty	Qty	Qty	Oty	Qty	Qty	Qty	Qty	Oty	Qty	Qty	Qty	Qty
corc	Dutacable	1	0	6	12	10	34	30	36	42	4	54	60	66	72	78
ESVC	Sense cable	9,4	0	3	6	9	12	15	18	21	24	27	30	33	16	39
EPINC	Power cable	14,7	0	3	6	9	12	15	18	21	24	27	30	33	16	39
ESRL	Service cable(1) Watercooling tubes	2x13	0	3	6	9	12	15 10	18	21	24	27	30	22	36 24	39
	Air cooling tubes for FE and BOX	*20	0	2	÷	-6		10	12	14	16	18	20	22	24	26
EACT TSGC	Signal	13	10	20	30	40	50	60	70	80	90	100	110	120	130	150
THVC	W	8,5	0	4	4			12	12	16	16	20	20	24	24	28
TLVC	LV Cable	13	1	1	2	2	3	1	4	4	5	5	6	6	7	
TUTC	UTP	6	1	1	2	2	3	1	4	4	5	5	6	6	7	
TTRL	Trigger (CR)	10	2	2	4	4	6	6			10	10	12	12	14	16
TGST	Gas Pipes TPC gas system	12	2	2	•	•				٠.	10	30	12	12	14	36
TGTT	Purge TPC (in/out)	40	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	LV															
TLPC	LVDB: low-voltage cable supply	12	0			16	36	24	32	12	32	32	40	40	48	44
TLSC	LVD8: sense wire	2,5	0	4	4			12	16	16	16	16	20	20	24	245
TCPC	Controller: low-voltage cable supply	12	0	2	2	4	4	6					10	10	12	12
TLCC	Controller: sense wire LVDB: slow control cable	2,5	0	2	2	4	4	6	4	4	4	4	5 10	10	12	12 5
TLUE.	LVUIE: NEW CONTROL LICEN	,		-	-	•	•			•		•	10	20	12	24 2
TDCC	Controller: slow control	7		2	2	4	4	6					10	10	12	12
TDDO	Controller: DATA CSFP	apt. 1.1	0	1	1	2	2	1	4	4	4	4	5	5	- 6	6
TOTO	Controller: data and trigger/ sync SFP+	opt. 3,9x1,8	0	1	1	2	2	1	4	4	4	4	5	5	6	6
TDRC	Controller: trigger Controller: Reset	6	0	1	1	2	2	3	4	4	4	4	5	5	6	6
TOSC	Controller: Sync	6	0	1	1	2	2	3	4	4	4	4	5	5	6	6
TDQO	Reserve cables QSFP	apt. 1.3	0	1	1	1	1	1	2	2	2	2	2	2	2	2
TOSO	Reserve cables SFP+	opt. 3,9x1,6	0	1	1	1	1	1	2	2	2	2	2	2	2	2
	ROC chamber															
TRAC	for RDC: HV power supply for anode sections	4,1	0	0	4	4					12	16	16	20	20	24
TREC	for RDC: HV electrade adjusting supply	4,1	0	0	1	1	2	2	2	2	1	4	4	5	5	6
TRIVE	for RDC: Hir locking grid for RDC: camerus electrode (cathode), test signal	4,1 4,1	0	0	2	2	4 2	2	2	2	6	4	4	10	10	12
TRSC	from ROC: signal cable (anode)	4,1	0	0	4	4	8	1	8	1	12	16	16	20	20	24
I FLAC	Seniors		_	_			-			-	-	-	-		-	-
TSSC	Temperature sensor cable Pt100		0	0	3	3	6	6	6	6	9	12	12	15	15	18
			_	-					_							
TSPC	Cables from pressure sensers on pipes cooling + stabilization	7,8	0	0	4	4					12	16	16	20	20	24
TSTC	Cables from temperature sensers on pipes cooling + stabilization	7,8	0	0	4	4		1		1	12	16	16	20	20	24
	HV TPC central membrane															
THEC	Central HV electrode TPC	-		0	0	0	0		0	0	1	1	1	1	1	1
THRC	low-voltage cable input for resistors (pentr). HV electrode	10		0			0		0		1	1	1	1	1	1
	Thermostabilization	-														
mor	external thermal screen stabilization pipes	32	0	0	2	2	2	4	4	6	6	7		8	10	10
пп	end Thermal Shield Stabilization Pipes	32	0	0	0	0	1	2	2	2	2	2	2	3	4	4
пп	inner thermal shield stabilization pipes	12	0	0	2	2	2	2	2	2	2	2	2	2	2	2
TTRE	Pipes stabilisation ROC chambers housings	32	0	0	0	0	0	0	0	0		2	2	2	2	2
TIFT	TPC flange stabilitation pipes with spokes Stabilitation pipes FE SAMPA	32	0	- 0	- 0	6	0	9	12	12	15	16	17	20	20	24
131	Cooling (12 loops)		1							-		-	-		-	-
TCLT	Cooling pipes LVDB, controllers & FE FPGA	32	0	0	0	1	2	2	2	2	2	2	1	3	4	4
	TPC laser system															
TLWC	Cable for WEB camera control system floor laser beam	,			1	1	1	1	1	1	1	2	2	2	2	2
LINE	TPC eas notion	-	-			-	-				-	-	-	-	-	-
TOST	Purge of C1C2 and C3C4 (input/output)	12	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	Hydraulic actuators															
TSGC	Position centers hydraulic cylinder	6	0	- 4	4	4	- 4	4	- 4	4	4	- 4	4	- 4	4	

TPC CABLING AND PIPING

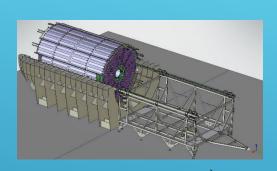
Integration ...


Structures for cables and pipes

fixation

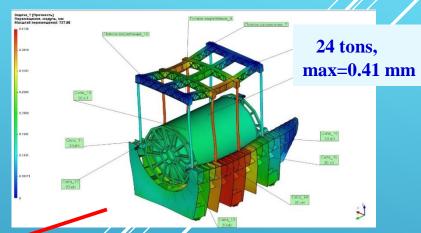
Structure design - in progress

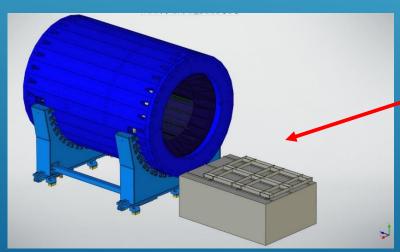
Prototype for cabling and piping

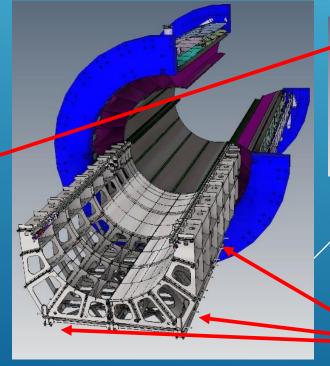


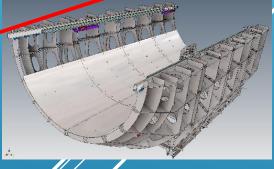
TPC+TOF+ECAL cabling – in progress
Piping – not started yet

TOOLING FOR INSTALLATION TPC TO MPD

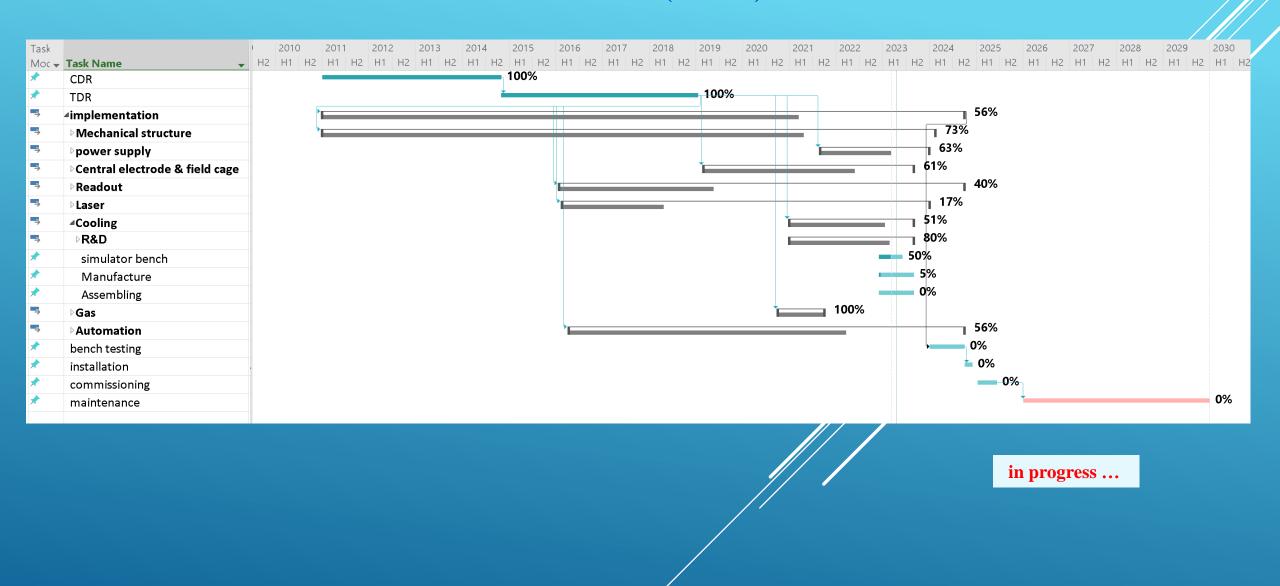

Bld. 217






Bld. 217 (MPD)

4 units for adjustment X, Y, Z


Design under optimization,
Prototype 1:5 –
June 2023

Tooling manufacture –
July 2023-Feb 2024

Delivery to JINR –
Spring 2024

PLANNING (DRAFT)

TIME SCHEDULE

Status:

TPC assembling:

Field cage assembly - July 2023

HV tests - August 10 2023

TPC vessel ready (glue by epoxy) - August 30 2023

Laser beams position measurements - Sept 2023
TPC vessel tightness measurements - Oct 2023

24 ROC chambers installation - Nov-Dec 2023

TPC tests: laser tracks and cosmic test - Jan-Sept 2024

Integration TPC to MPD:

TPC racks (8pc) + cabling - autumn 2023-2024

TPC rails (2pc manufacture and delivery) - Oct 30 2023 on critical path!!!

Rails installation to ECAL support structure - Nov 2023

Tooling for installation TPC to MPD:

Design optimization + prototype 1:5 - June 2023

Tooling manufacture - July 2023 – Feb 2024 (8 month)

Delivery to JINR - Spring 2024

TPC+ECAL cooling systems: FE cooling - Nov 2023

commissioning - Sept 30 2024

TPC installation to MPD - Oct 1-Nov 30 2024
MPD commissioning - Jan 10 - Feb 2025