

Nuclotron based Ion Colider fAcility

MPD Collaboration Status

V. Riabov for the MPD Collaboration

MPD at NICA

♦ One of two experiments at NICA collider to study heavy-ion collisions at $\sqrt{s_{NN}} = 4-11$ GeV

- Expected beam configuration in first year(s) of operation:
 - \checkmark not-optimal beam optics with wide z-vertex distribution, $\sigma_z \sim 50~cm$
 - ✓ reduced luminosity (~10²⁵ is the goal for 2023) → collision rate ~ 50 Hz
 - ✓ collision system available with the current sources: C (A=12), N (A=14), Ar (A=40), Fe (A=56), Kr (A=78-86), Xe (A=124-134), Bi (A=209)
 - ✓ First beams: Bi+Bi @ 9.2 GeV in 2024

NICA Relativistic heavy-ion collisions

- At $\mu_B \sim 0$, smooth crossover (lattice QCD calculations + data)
- ↔ At large μ_B , 1st order phase transition is expected → QCD critical point
- BM@N and MPD will study QCD medium at extreme net baryon densities
- ✤ Many ongoing (NA61/Shine, STAR-BES) and future experiments (CBM) in ~ same energy range

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

10 Countries, >450 participants, 33 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokesperson: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research;

AANL, Yerevan, Armenia; University of Ploydiv. Bulgaria: Tsinghua University, Beijing, China; USTC, Hefei, China; Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Benemérita Universidad Autónoma de Puebla, Mexico: Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa, Mexico: Universidad de Colima, Mexico: Universidad de Sonora, Mexico; Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, **Russia**; INR RAS, Moscow, **Russia**; MEPhl, Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; NRC Kurchatov Institute, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St. Petersburg State University, **Russia**; SINP, Moscow, **Russia**; VINČa Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia**

MPD schedule

✤ Latest estimates provided by V. Golovatyuk

	Year 2023						
12	Jan 15 - April 15th	Preparation for Vacuum test of Solenoid with Cryostat					
13	April 20 May 15th	Vacuum tests					
14	May 15 - June 15th	Solenoid cooling down to Liquid Nitrogen temperature (-80K)					
15	June 15 – September 15	Activities in the MPD Hall stopped					
16	October – December	Cooling down to the He temperature					
	Year 2024						
17	January February 15	Supplying the current to the solenoid and Correction coils					
15	March - May 15	Magnetic Field measurements					
15	June 1 - June 10	Support Frame installation					
16	June 20 – August 30th	Installation ECal sectors, Moving Platforms mounting					
17	Sept 1 – September 30 th	Installation TOF modules, FHCal into poles					
18	Oct 1st - Nov 30	TPC installation					
19	Sept 18 - Nov 30	Cabling					
20	Dec 4 - Dec 25	Installation of beam pipe					
	Year 2025						
21	Jan 10 - Feb	Move the MPD on Collider beam line, Commissioning					

Schedule of the MPD-NICA is significantly affected by the current geopolitical situation (suspension of collaboration with CERN and Polish & Czech Republic member institutions, economic sanctions and problems with supplies of many components from companies).

Activities in the MPD Hall

Top platform (cryogenics, power supplies, control system)

Temporary scheme of Solenoid cooling

- ✤ Yoke, TRIM coils, top platform assembled
- Started assembling of the refrigerators and control Dewar
- Chimney area partly assembled, missing elements for SC cable connections ordered in Russia
- ✤ Pipes, LN2 tanks, LHe pipe, heaters and other equipment was re-ordered in Russia
- ✤ Power supplies and control system are being tested, works with cables are ongoing

MPD subsystems in production

V. Riabov, MPD Status, April 2023

Beam and luminosity monitoring

- ✤ To be used with MPD in service/working position:
 - \checkmark assistance in controlling the transverse sizes of the bunches
 - \checkmark assistance in setting up transvers and longitudinal convergence of bunches
 - \checkmark control of the distribution of vertices in the longitudinal direction.

The detector consists of 100x10x10 mm³ plastic scintillator strips (organic polystyrene scintillator with the addition of 1.5% p-terphenyl and 0.05% POPOP) viewed from both sides with SiPMs (HAMAMATSU S13360 6025 CS)

- ★ Trigger: condition: $|T_L^{min} T_R^{min}| < 10$ ns; efficiency 77% in AuAu@11 GeV (DCM-SMM)
- ✤ Observables & methods:
 - ✓ counting rate and z-vertex distribution ($\sigma_{z-vertex} \sim 5$ cm with $\delta \tau \sim 300$ ps)
 - ✓ Van der Meer and ΔZ scans for optimization of beam optics

Collaboration activity

- Many ongoing construction works, theoretical and physics feasibility studies, see reports on hardware/software/physics topics at the collaboration meeting
- ✤ MPD publications: over 200 in total for hardware, software and physics studies:

- Support of Russian institutions in the NICA project:
 - ✓ 2019-2021: RFBR grant program, 2019-2021
 - ✓ 2022: internal JINR grants for students/PhD, 2022
 - ✓ 2023: internal JINR grants for leaders/students/PhD, 2023
 - \checkmark 2023 and beyond: expect support by Russian Ministry of Science

Conferences

- ✤ MPD presentations at conferences since last CM:
 - ✓ DAE-BRNS CETHENP-2022, November 15 17
 - ✓ XVIII Mexican Workshop on Particles and Fields (XVIII MWPF), November 21 25
 - ✓ International Conference on Particle Physics and Astrophysics (ICPPA-2022), Nov. 29 Dec. 2
 - ✓ Infinite and Finite Nuclear Matter (INFINUM-2023), February 27 March 3
- MEPhI-JINR organized International Workshop NICA-2022 (http://indico.oris.mephi.ru/event/298):
 - \checkmark 25 lectures in three days on experimental and theoretical topics
 - \checkmark a step towards enhancing communications between theoretical and experimental communities
 - ✓ joint platform for discussion of NICA physics at BM@N and MPD

MPD physics program

G. Feofilov, A. Aparin	V. Kolesnikov, Xia	nglei Zhu	K. Mikhailov, A. Taranenko			
 Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 Spectra of light hyper Light flavor spectra of light hyper Light flavor spectra of the hyperons and Total particle synthesis Kinematic and properties of the hyperons of thyperons of the hyperon	ght flavor and nuclei bectra hypernuclei yields and yield chemical the event Phase Diag.	 Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations 			
V. Riabov, Chi Yang		Wangmei Zha, A. Zinchenko				
 Electromagnetic presentation Electromagnetic calorimeter Photons in ECAL and central Low mass dilepton spectra in modification of resonances a intermediate mass region 	r obes meas. barrel n-medium and	 Heavy flavor Study of open charm production Charmonium with ECAL and central barrel Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 				

- Cross-PWG format of meetings for discussion of results and analysis techniques
 - \checkmark increase the attendance
 - \checkmark improve communication and sharing of ideas between different analysis groups

MPD mass productions

- ♦ Physics feasibility studies using centralized large-scale MC productions → consistent picture of the MPD physical capabilities with the first data sets, preparation for real data analyses
- https://mpdforum.jinr.ru/c/mcprod/26:

Request 25: General-purpose, 50M UrQMD BiBi@9.2 → DONE
Request 26: General-purpose (trigger), 1M DCM-QGSM-SMM BiBi@9.2 → DONE
Request 27: General-purpose (trigger), 1M PHQMD BiBi@9.2 → DONE
Request 28: General-purpose with reduced magnetic field, 10M UrQMD BiBi@9.2 → DONE
Request 29: General-purpose (hypernuclei), 20M PHQMD BiBi@9.2 → DONE
Request 30: General-purpose (hyperon polarization), 15M PHSD BiBi@9.2 → DONE
Request 31: General-purpose (femtoscopy), 50 M UrQMD BiBi@9.2 with freeze-out → QA
Request 32: General purpose (flow), 15M vHLLE+UrQMD with XPT → in preparation
Request 33: General purpose (flow), 15M vHLLE+UrQMD with 1PT → in preparation

- Production and analysis of data sets, which are comparable in size to the first expected real data samples test the existing computing and software infrastructure
- Learn how to handle the big data sets, develop analysis methods and techniques, set priorities for different analyses, find group leaders, etc.
- Thanks to Andrey Moshkin and the whole computing/software team !!!

Handling the big data sets

- ✤ Move to a centralized Analysis Framework for access and analysis of data: (used at RHIC/LHC)
 - \checkmark analogous approaches are used at RHIC/LHC, proved to be very useful
 - \checkmark consistent approaches and results across collaboration, easier storage and sharing of codes and methods
 - ✓ analyses are grouped in trains and run simultaneously with a single access to data per train → reduced number of input/output operations for disks and databases, easier data storage on tapes
- Analysis manager reads event into memory and calls wagons one-by-one to modify and/or analyze data:

- ✤ Example:
 - ✓ Wagon #1 event selector selects events to be analyzed
 - \checkmark Wagon #2 centrality analyzer returns values of centrality for all other wagons in the train
 - ✓ Wagon #3 recalibrator redefines some DST variables that need recalibration after production
 - ✓
 - \checkmark Wagon #4, 5, ... physics analysis 1, 2, ...

Analysis Train

- ✤ The Analysis manager and the first Wagons have been created
- Analysis manager in MpdRoot @ mpdroot/physics, originally committed by D. Peresunko:

MpdAnalysisEvent.cxx MpdAnalysisEvent.h MpdAnalysisManager.cxx MpdAnalysisManager.h MpdAnalysisTask.cxx MpdAnalysisTask.h

- Analysis Wagons:
 - ✓ mpdroot/physics/evCentrality provides event centrality for all mass productions using TPC multiplicity
 - ✓ mpdroot/physics/evPlane provides event plane for all mass productions using FHCAL and TPC
 - ✓ mpdroot/physics/photons example of the code for $\pi^0 \rightarrow \gamma\gamma$, $\pi^0 \rightarrow \gamma e^+e^-$, $\pi^0 \rightarrow e^+e^-e^+e^-$ analyses
 - ✓ mpdroot/physics/pairKK example of the code for $\phi(1020) \rightarrow K^+K^-$ analysis ← uses event centrality and event plane
- Eventually all analysis codes should be committed to MpdRoot as Wagons
- The Train will run on a group of DST files, ~ 100k events \rightarrow 500 jobs for 50M production
- Will need a Train Conductor (Production manager ???) to run the jobs without quota issues
- Results for all analyses/wagons run on a big production (~ 50 M events) in a day !!!

Advancements in analyses

NICA Trigger simulation, BiBi@9.2 GeV

- ✤ Trigger subsystems: FFD, FHCAL, …
- Simulation of forward detectors requires specialized event generators: DCM-QGSM-SMM, PHQMD
 - FFD trigger definition:
 - \checkmark at least one fired channel per side
 - ✓ meaningful times, $0 < \text{time}_{E,W} < 50 \text{ ns}$
 - ✓ reconstructed z-vertex, |z-vertex| < 140 cm

- FHCAL trigger definition:
- \checkmark at least one fired channel per side
- ✓ meaningful times, $0 < \text{time}_{E,W} < 50 \text{ ns}$
- ✓ reconstructed z-vertex, |z-vertex| < 150 cm

✤ For the mass productions, we use FFD ||FHCAL trigger with trigger efficiency of 95%

use FFD||FHCAL trigger with trigg

Trigger emulation

- ↔ UrQMD, PHSD \rightarrow simulation of trigger is meaningless
- ✤ Use TPC multiplicity as a proxy for trigger efficiency for all mass productions
- Drop a fraction of event with trigger efficiency < 1, Rndm() > TrigEff[N_{TPC}]

Trigger efficiency vs. multiplicity

- At $N_{TPC} > 0-10$ the trigger efficiency saturates for FFD||FHCAL option
- Evaluated trigger efficiency is applicable only for default track/event selection cuts:
 - ✓ nhits > 10; p_T > 0.1 GeV/c; DCA < 2.0 cm; $|\eta|$ < 0.5

NICA Event centrality by TPC multiplicity

- ♦ Additional requirement, $N_{TPC} > 0 \rightarrow$ together with FFD||FHCAL sample 91% of the total cross section
- Event multiplicity is calculated using weight for each track ~ $1/\text{RecEff}(z\text{-vertex}, \eta)$
- ✤ Centrality is defined as percentile of the total multiplicity with maximum of 91%

Centrality Wagon calculates centrality for all available mass productions, including Request 28 production with the reduced magnetic field

FFD as a reaction plane detector

✤ Forward FFD detector – 2 arrays (40 channels each) of Cherenkov detectors

Event plane resolution with FFD and FHCAL:

 $\begin{array}{ll} \textbf{2 sub} \\ \textbf{event} \\ R_{1,i} = \sqrt{\langle Q_{1,i}^N Q_{1,i}^S \rangle}, i = x, y \\ R_{1,i}^{True} = \langle Q_{1,i} \Psi_{RP} \rangle \\ \\ \hline \end{array} \\ \hline \begin{array}{c} & \\ \textbf{FHCalFFD (S) \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{FHCalFFD (N) \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{FHCalFFD (N) \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{FHCalFFD (N) \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{FHCalFFD (N) \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{FHCalFFD (N) \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{FHCalFFD (N) \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -2 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -5 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \end{array} & \begin{array}{c} & \\ \textbf{TPC \\ -5 \\ -5 \end{array} & \begin{array}{c} & \\ \textbf{TPC } & \\ \textbf{TPC } & \begin{array}{c} & \\ \textbf{TPC \\ -5 \end{array} & \begin{array}{c} & \\ \textbf{TPC } & \\ \textbf{TPC } & \end{array} & \begin{array}{c} & \\ \textbf{TPC } & \\ \textbf{TPC } & \\ \textbf{TPC } & \end{array} & \begin{array}{c} & \\ \textbf{TPC } & \\ \textbf{TPC } & \\ \textbf{TPC } & \\ \textbf{TPC } & \end{array} & \begin{array}{c} & \\ \textbf{TPC } & \\ \textbf{TPC } & \\ \textbf{TPC } & \\ \textbf{TPC } & \end{array} & \begin{array}{c} & \\ \textbf{TPC } & \\ \textbf{TPC$

Good agreement for 2 and 3 sub event methods

- ✤ FFD resolution is much worse than that of FHCAL
- Flow measurements with FFD are possible (backup solution) but require much larger statistics

NICA Machine learning techniques at MPD

- TPC fast digitizer
- PID for TOF matched TPC tracks
- Open charm reconstruction with ITS
- Hyperon reconstruction

Dielectrons

- With current track reconstruction algorithm, low p_T tracks are not reconstructed properly even though full hit information is available in the detector for tracks with $p_T \gtrsim 30 \text{ MeV} \rightarrow \text{major}$ source of CB.
- Tracks with $p_T \leq 100$ MeV do not cross the TPC (hence don't reach TOF \rightarrow Not defined as fully reconstructed).
- Possible solutions \rightarrow higher tagging efficiency of Dalitz and conversion electrons:
 - ✓ fully reconstructed conversion and Dalitz pairs
 - ✓ Dalitz pairs reconstructed as e- γ pairs using TPC/TOF and ECAL
 - Selection of good e-track candidates in a narrower η-range, looser e-ID/selection cuts to increase probability to find a Dalitz/conversion partner in the detector
- Running with the most realistic simulations (recent mass productions)
- ♦ p_{T} -integrated S/B ~ 0.05 in 0.2-1.5 GeV/c² → expects further improvements

Summary

- Preparation of the MPD detector and experimental program is ongoing, all activities are continued
- ♦ Commissioning and start of data taking \rightarrow 2025
- ✤ Further program will be driven by the physics demands and NICA capabilities

BACKUP

V. Riabov, MPD Status, April 2023

RHIC BES program

♦ Data taking by STAR at RHIC: $3 < \sqrt{s_{NN}} < 200 \text{ GeV} (750 < \mu_B < 25 \text{ MeV})$

Au+Au Collisions at RHIC											
Collider Runs						Fixed-Target Runs					
	√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run		√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run
1	200	380 M	25 MeV	5.3	Run-10, 19	21	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV	2	Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV	10	Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV	8 X	Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV	55	Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	157 M	316 MeV	~	Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV	65	Run-21	н	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
				2		12	3.0 (3.85)	2000 M	750 MeV	-1.05	Run-18, 21
		•			•						

- A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
 - ✓ Au+Au collisions only
 - ✓ Among the fixed-target runs, only the 3 GeV data have full midrapidity coverage for protons (|y| ≤ 0.5), which is crucial for physics observables

Hot topics to fill the gaps

- Critical fluctuations for (net)proton/kaon multiplicity distributions *
- Global hyperon polarization in mid-central A+A collisions (Λ, Ξ, Ω) *
- Spin alignment of vector mesons (K^{*}(892), $\phi(1020)$)
- Dielectron continuum and LVMs

beam direction

*

. . . .

 $\frac{dN}{d\cos\theta}$

V. Riabov, MPD Status, April 2023

 $O\overline{\Lambda}$

OĀ

Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ

 10^{3}

√s_{NN} [GeV]

Strangeness enhancement: pp, p-A, A-A

Predicted and experimentally observed in heavy-ion collisions at AGS, SPS, RHIC and LHC energies

ALI-PREL-321075

- Discovery of ALICE smooth evolution of enhancement vs. multiplicity in pp, p-A and A-A
- Origin of the strangeness enhancement in small/large systems is still under debate:
 - \checkmark strangeness enhancement in QGP contradicts with the observed collision energy dependence
 - strangeness suppression in pp within canonical suppression models reproduces most of results except for $\phi(1020)$
- ♦ System size scan for (multi)strange baryon and meson production is a key to understanding of strangeness production → <u>unique capability of the MPD</u> in the NICA energy range

Anisotropic flow in large/small systems

• A+A: initial eccentricity and its fluctuations drive v_n with specific viscous modulation

• $p/d/^{3}$ He+A: v_{n} 's are correlated to the initial geometry, the only explanation is formation of short-lived QGP droplets in collisions of light and heavy nuclei

System size scan for flow measurements is vital for understanding of the medium transport properties and onset of the phase transition \rightarrow <u>unique capability of the MPD</u> in the NICA energy range

NICA High-energy heavy-ion reaction data

- ✤ Galactic Cosmic Rays composed of nuclei (protons, ... up to Fe) and E/A up to 50 GeV
- ✤ Cosmic rays are a serious concern to astronauts, electronics, and spacecraft.
- * The damage is proportional to Z^2 , secondary production of p, d, t, ³He, and ⁴He is also significant
- Need input information for transport codes for shielding applications (Geant-4, Fluka, PHITS, etc.):
 - \checkmark total, elastic/reaction cross section
 - ✓ particle multiplicities and coallecense parameters
 - ✓ outgoing particle distributions: $d^2N/dEd\Omega$
- ✤ NICA can deliver different ion beam species and energies:
 - ✓ Targets of interest (C = astronaut, Si = electronics, Al = spacecraft) + He, C, O, Si, Fe, etc.
- No data exist for projectile energies > 3 GeV/n

Light fragment identification in a wide y-range \rightarrow <u>unique capability of the MPD</u> in the NICA range

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$ **TOF, EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi$, 2.9 < $|\eta| < 3.3$ **FHCAL**: $|\Delta \phi| < 2\pi$, 2 < $|\eta| < 5$

+ forward spectrometers

Au+Au @ 11 GeV (UrQMD + full chain reconstruction)

Magnetic field measurements

- CERN design of mapper :
- ✓ 38 Hall probes move in z and ϕ directions
- ✓ accuracy 1.5-2.0 Gs
- ✓ range of fields 0.57 -0.5 T

- Concept of Novosibirsk INP mapper:
 - ✓ 1 Hall 3D probe moves in 3 directions: z, R, ϕ
 - ✓ accuracy: 0.3 0.5 Gs
 - ✓ range of fields: 0.2-0.57 T

- 1. Aluminum (carbon fiber plastic) guiding rod
- 2. End cap fixation
- 3. Intermediate support
- 4. Carbon fiber plastic carriage