
Lambda global polarization studies with MPD

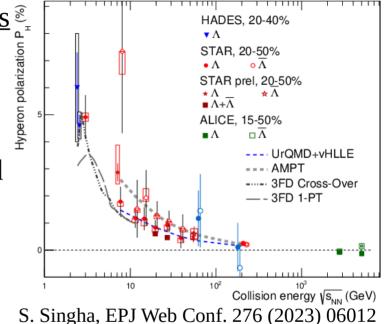
<u>Elizaveta Nazarova</u>¹ et al. «Vorticity and Polarization in Heavy-Ion Collisions»

XI-th Collaboration Meeting of the MPD Experiment at the NICA Facility

20.04.2023

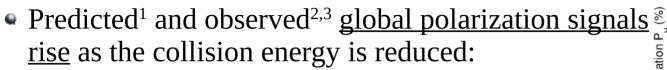
¹ Joint Institute of Nuclear Research, Dubna, Russia

Outline

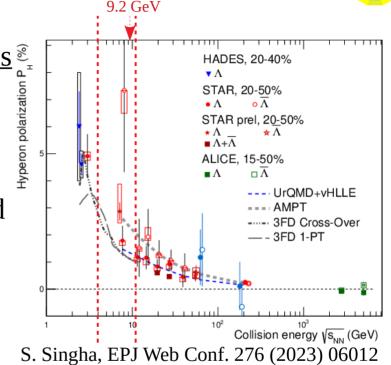


- Introduction
- Analysis technique
 - Simulation
 - > Event reconstruction
 - Lambda reconstruction
 - > Global polarization measurement
- Implementation within the centralized MPD framework
- Results
- Conclusions & Outlook

- Predicted¹ and observed^{2,3} <u>global polarization signals</u>
 <u>rise</u> as the collision energy is reduced:
 - > NICA energy range will provide new insight
- $\Lambda(\overline{\Lambda})$ splitting of global polarization
- Comparison of models, detailed study of energy and kinematical dependences, improving precision
- Probing the vortical structure using various observables^{4,5,6}


- ¹O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)
- ² J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)
- ³ F. Kornas for the HADES Collaboration, SQM 2021
- ⁴E. Nazarova et al., Phys.Part.Nucl.Lett. 18 (2021) 4, 429-438
- ⁵O. Teryaev and R. Usubov, Phys. Rev. C 92, 014906 (2015)
- ⁶ M. A. Lisa et al., Phys. Rev. C 104, 011901 (2021)

Elizaveta Nazarova



4/30

- > NICA energy range will provide new insight
- $\Lambda(\overline{\Lambda})$ splitting of global polarization
- Comparison of models, detailed study of energy and kinematical dependences, improving precision
- Probing the vortical structure using various observables^{4,5,6}

- ¹O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)
- ² J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)
- ³ F. Kornas for the HADES Collaboration, SQM 2021
- ⁴E. Nazarova et al., Phys.Part.Nucl.Lett. 18 (2021) 4, 429-438
- ⁵O. Teryaev and R. Usubov, Phys. Rev. C 92, 014906 (2015)
- ⁶ M. A. Lisa et al., Phys. Rev. C 104, 011901 (2021)

Elizaveta Nazarova

Global hyperon polarization

- w.r.t. reaction plane (RP)
- Emerges in HIC due to the system angular momentum^{1,2}
- Measured through the weak decay (1)

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\mathrm{H}}|\vec{P_{\mathrm{H}}}|\cos\theta^*) \left(1\right)$$

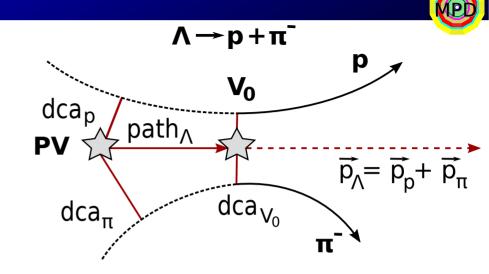
- * denotes Lambda rest frame
- θ^* angle between the decay particle and polarization direction

• $\alpha_{\Lambda} \simeq - \alpha_{\bar{\Lambda}} \simeq 0.732$ (Value updated in 2019³)

¹Z. Liang, X. Wang, PRL 94, 102301 (2005)
²L. Adamczyk et al., Nature 548, 62 (2017)
³Ablikim M, et al., Nature Phys. 15:631 (2019)

 $\Lambda \rightarrow p + \pi$ <u>s</u>* θ* φ A p θ been the second reaction

20.04.2023



Global hyperon polarization

 Polarization can be measured using the azimuthal angle of proton in Lambda rest frame φ^{*}

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi^*) \right\rangle$$

- → Determine centrality
- → Determine event plane $(\Psi_{\rm EP}^1, R_{\rm EP}^1)$
- → Reconstruct Lambda
- → Global polarization

- PV primary vertex
- V_0 vertex of hyperon decay

20.04.2023

- dca distance of closest approach
- path decay length

Analysis technique

MC

simulation

PHSD

Detector

simulation

GEANT 4

7/30

• <u>MC simulation</u> using PHSD generator^{1,2,3}

- Bi-Bi @ 9.2GeV, 15M MB events, b [0,12]fm (request 30)
- Global hyperon polarization
 - > Thermodynamical (Becattini) approach⁴
 - > Hyperon polarization vector ($\mathbf{P} = \{P_x, P_y, P_z\}$)
 - \rightarrow Higher polarization for $\overline{\Lambda}$ (w.r.t. Λ)

See detailts in talk by V. Voronyuk

Event reconstruction **MPD**

¹W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 ² N.S. Tsegelnik, E.E. Kolomeitsev, V. Voronyuk, Phys.Rev.C 107 (2023) 3, 034906 ³N Tsegelnik, E. Kolomeitsev, V. Voronyuk, Particles 2023, 6, 373-384 ⁴F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32 20.04.2023

Analysis technique

MC

simulation

PHSD

Detector

simulation

GEANT 4

Event

reconstruction

MPD

Detector simulation

- > Transfer of polarization vector $\mathbf{P} = \{P_x, P_y, P_z\}$ from generated data to the detector simulation
- Rotation w.r.t. to generated reaction plane
- Spin direction of hyperons is randomized according to the probability (length of the vector |**P**|)
- Transfer of polarization during hyperon decays^{1,2} (feeddown effect)

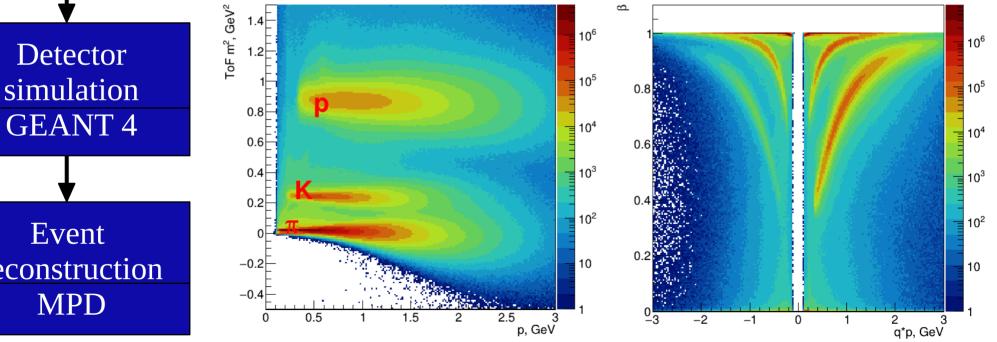
$$S_{D}^{*} = CS_{P}^{*};$$

 \triangleright

- Spin direction randomized based on the feed-down constant
- Anisotropic decay of Λ hyperons (following eq. (1))

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\mathrm{H}}|\vec{P_{\mathrm{H}}}|\cos\theta^*) \quad (1)$$

¹ Ξ⁺(Ξ⁻), Ξ⁰, Σ⁰ decays (C_{Ξ} - = 0.927, C_{Ξ} = 0.9, C_{Σ} = -1/3) ² F. Becattini et al., Phys.Rev.C 95 (2017) 5, 054902



Analysis technique

• Event reconstruction

- Centrality calibration TPC multiplicity
- > Event plane determination (Ψ_{FP}^{1} , R_{FP}^{1}) via FHCal
- > Lambda reconstruction PID
- Global polarization extraction EP method

Event reconstruction

MC

simulation

PHSD

Detector

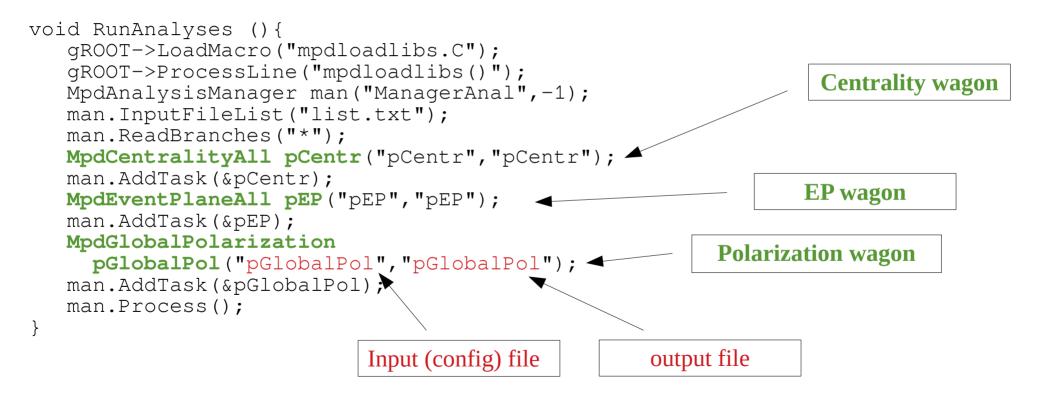
Elizaveta Nazarova

MPD


Lambda global polarization studies with MPD

20.04.2023

Implementation within the MPD framework



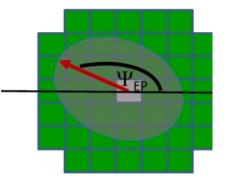
- Incorporating the code for hyperon global polarization analysis into the centralized MPD train framework
- Utilizing Centrality and Event Plane wagons
- Events are processed one-by-one by each wagon, that modify and/or analyze the data
- All wagons have similar structure \rightarrow provide consistency among all analyses

20.04.2023

• Main macro to start the train (example):

Implementation within the MPD framework

- Centrality Wagon (see V. Riabov report at Cross-PWG)
- Calculates centrality based on TPC multiplicity
- Return centrality «-1» for rejected events (not included in the further analysis)
 - Empty events
 - > Events with no vertex by TPC
 - Events with reconstructed vertex |z-vertex-TPC| > 130 cm
 - Events that failed to fire FFD||FHCal trigger (assessed based on event track multiplicity using efficiency file)
- Event centrality (float in [0-91]) is available for all other wagons in the train: <u>event.getCentrTPC()</u>;
- For global polarization analysis we used 4 or 7 bins of centrality


- Selection criteria:
 - ≻ |η| < 0.5
 - $|p_{T}| > 0.1 \text{ GeV}$
 - $\sim N_{hits} > 10$
 - > |DCA| < 2.0
 - Cuts on empty events and vertex, trigger efficiency

0-10%, 10-20%, 20-50%, 50-100%

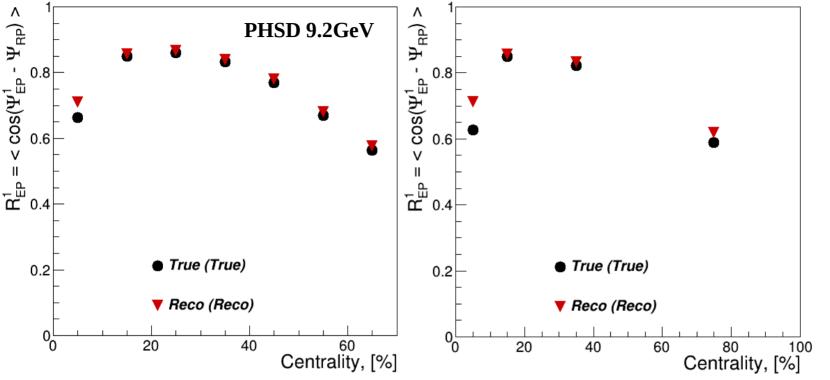
0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%

20.04.2023

- Event Plane Wagon (see P. Parfenov report at Cross-PWG)
- Calculates <u>1st-order EP angle via FHCal</u>, 2nd-order EP angle via TPC
 - Can be accessed in other wagons (e.g. for FHCal):
 - \succ event.fMpdEP.GetPhiEP_FHCal_F_all() → Full
 - → event.fMpdEP.GetPhiEP_FHCal_N_all() $\rightarrow \eta < 0$
 - → event.fMpdEP.GetPhiEP_FHCal_S_all() → $\eta < 0$
- Corresponding EP resolutions can be calculated using the provided information (within the analysis via subevent method¹)
- Option to use EP corrections (reduce possible bias from non-uniform detector acceptance)

$$\Psi_{\rm EP}^n = \frac{1}{n} \arctan \frac{Q_y}{Q_x}$$

$$Q_y = \Sigma_i \mathbf{w}_i \sin(n\phi_i)$$
$$Q_x = \Sigma_i \mathbf{w}_i \cos(n\phi_i)$$


 $\mathbf{w}_i = E_i/E_{\mathrm{total}}$ (FHCal)

¹A. M. Poskanzer , S. Voloshin Phys.Rev. C (1998) 58. pp. 1671–1678

Lambda global polarization studies with MPD

Event plane resolution

- 1-st order EP resolution using FHCal (for 7 or 4 bins of centrality)
- True: w.r.t. RP angle
- Reco: determined using subevent method¹

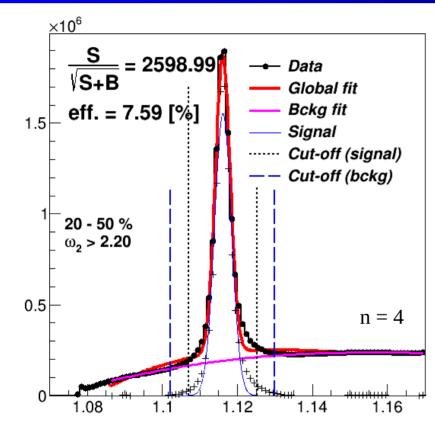
¹A. M. Poskanzer , S. Voloshin Phys.Rev. C (1998) 58. pp. 1671–1678

Elizaveta Nazarova

Lambda global polarization studies with MPD

14/30

20.04.2023


Global Polarization Wagon

- MC polarization \rightarrow check simulation and extraction method
 - Using information from MCTracks, obtains MC distribution of global polarization for Lambda/ALambda
 - Obtains angular distribution of protons from Lambda using either RP or EP angle, which can be fitted to extract polarization
- RECO polarization → feasibility study of Lambda polarization
 - > Obtains topology selection cuts for Lambda reconstruction («selection» option)
 - Currently done for ω₂ selection («omega»), plan to add multidimensional selection based on dca or chi values
 - The obtained file with selection values needs to be used in the second iteration of the train («analysis») to obtain the required distributions for polarization extraction using EP method

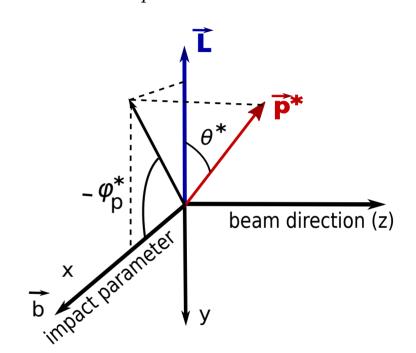
Lambda reconstruction

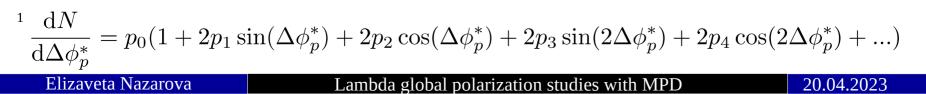
LIIZAVELA INAZALUN

Fitting procedure:

- Global fit (Gauss + Legendre polynomials)
- > Background fit in sidebands ($\pm 7\sigma$)
- > Cut-off: $< M_{\Lambda} > \pm n^* \sigma$
- > ω_2 cut based on maximum significance (for each centrality bin)

	ω ₂	Significance
0-10%	3.6	2315.98
10-20%	3.0	2043.82
20-50%	2.2	2598.99
50-100%	1.7	1166.78

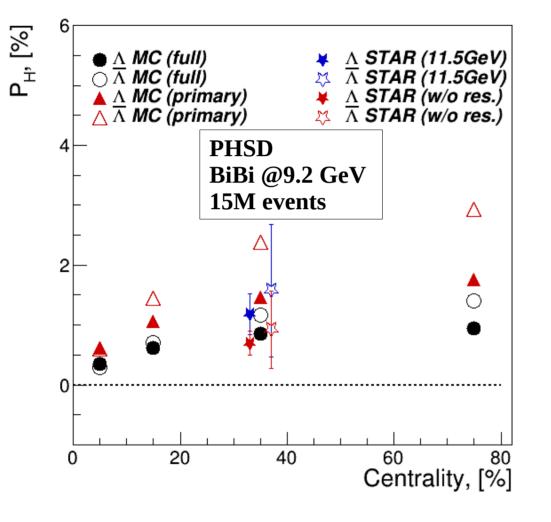

 $\overline{\chi^2_{\mathrm{Vo}}}$

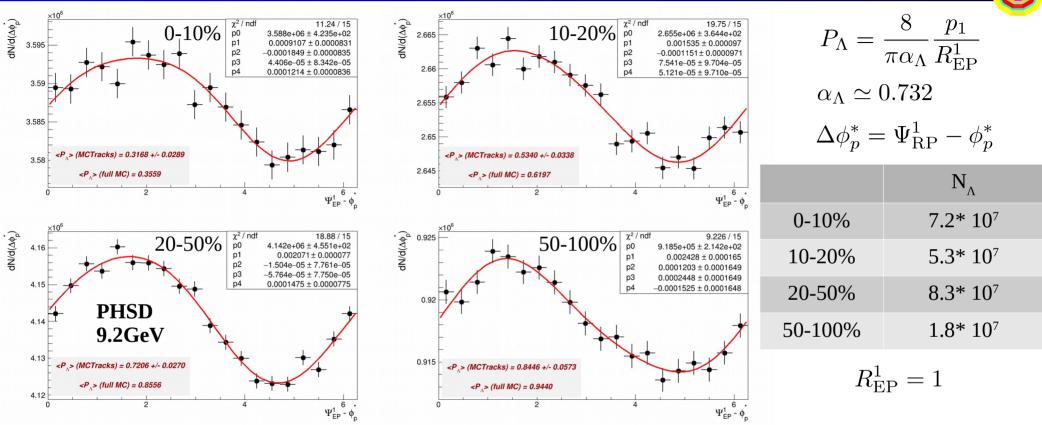

$$f(x) = p_0 \exp\left(\frac{(-0.5(x-p_1))^2}{p_2^2}\right) + p_3(L_0 + p_4L_1 + p_5L_2 + p_6L_3 + p_7L_4) \qquad \omega_2 = \ln\frac{\sqrt{\chi_\pi\chi_p}}{\chi_\Lambda^2 + \chi_{V_0}^2}$$

Elizaveta Nazarova Lambda global polarization studies with MPD 20.04.2023 16/30

Global polarization reconstruction

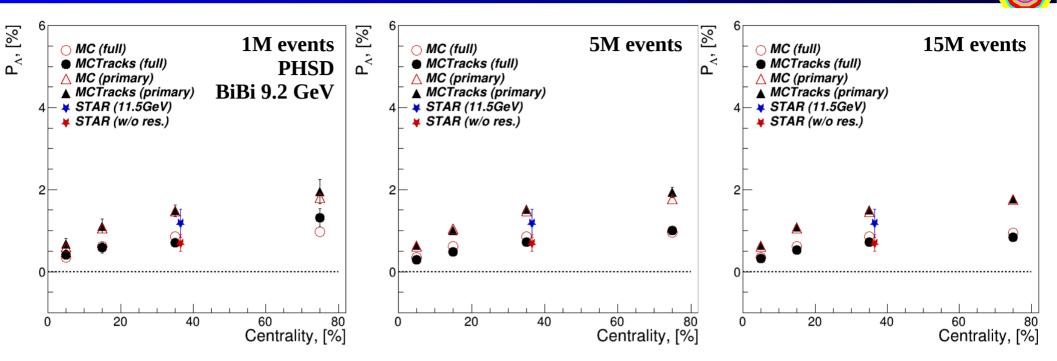
- Obtain invariant mass distribution in bins of $\Delta \phi_p^* = \Psi_{\rm EP}^1 \phi_p^*$
 - \succ Net amount of Λ in each bin
 - > Distribution of $N_{\Lambda}(\Delta \phi_p^*)$
- Fit of the distribution¹ to get $\langle \sin(\Delta \phi_p^*) \rangle \rightarrow P_{\Lambda}$
 - > **«Event plane»** method (p_n fit parameters)
 - $P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{p_1}{R_{\rm EP}^1}$
 - Can be used for testing of both Reco and MC tracks within the simulation


$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi_p^*) \right\rangle$$



- Polarization of $\overline{\Lambda}$ is higher than that of Λ
- Feed-down effects decrease full polarization values (primary + secondary hyperons)
- Model values of polarization can be extracted as mean value of P_y distribution (-|P_y|)
- EP method can be used to measure polarization from both MC and Reco tracks

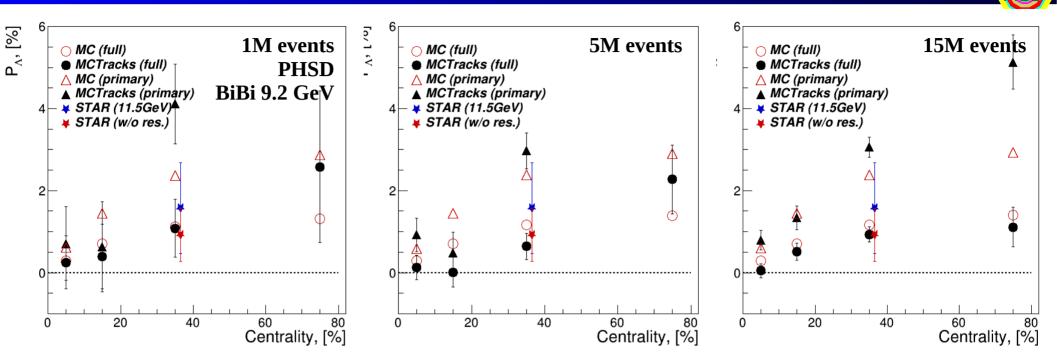
Results (MC, Lambda)



- Anisotropy is clearly visible in the angular distribution
- Good agreement between values calculated via fitting procedure and mean MC polarization

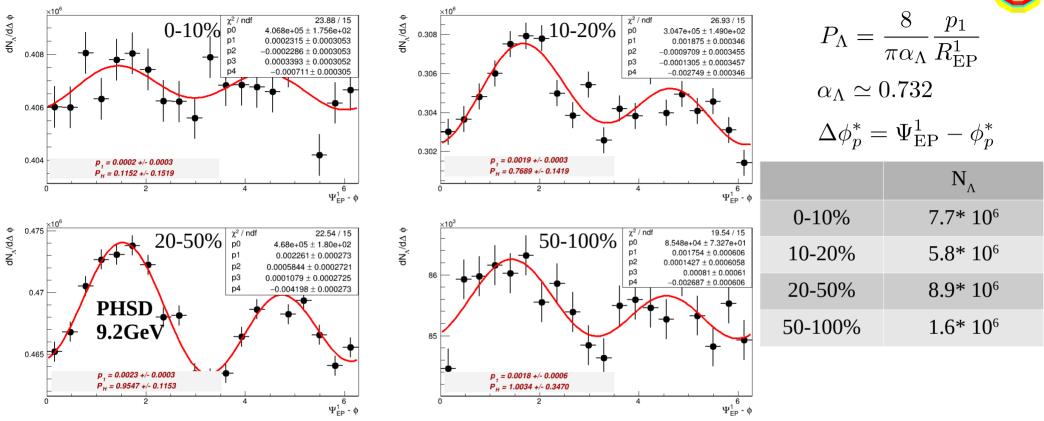
 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi_p^*} = p_0(1 + 2p_1\sin(\Delta\phi_p^*) + 2p_2\cos(\Delta\phi_p^*) + 2p_3\sin(2\Delta\phi_p^*) + 2p_4\cos(2\Delta\phi_p^*) + \dots)$

Lambda global polarization studies with MPD


Results (MC, Lambda)

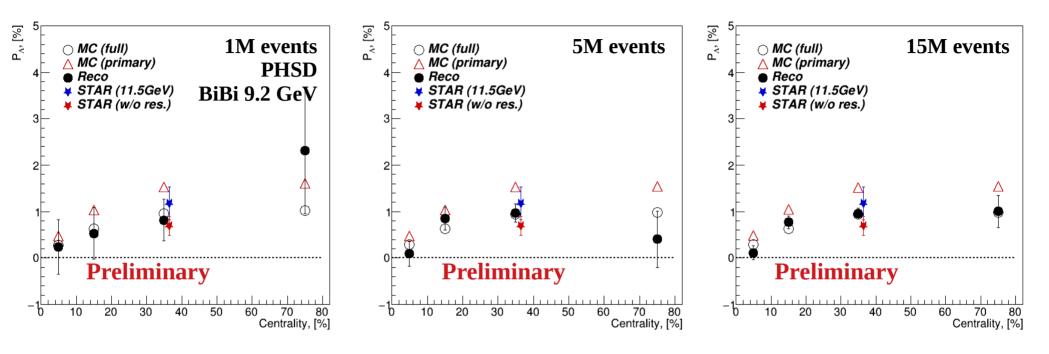
- Testing the EP method of polarization extraction on the MCTracks
- Model value of polarization (MC) compared with the one calculated through the angular distribution (MCTracks)
- Using RP angle instead of EP angle
- Results are consistent and in good agreement

Results (MC, ALambda)


- Testing the EP method of polarization extraction on the MCTracks
- Model value of polarization (MC) compared with the one calculated through the angular distribution (MCTracks)
- Using RP angle instead of EP angle
- Results are consistent and in good agreement (statistics for ALambda is lower)

22/30

Results (Reco, Lambda)


- Anisotropy is clearly visible in the angular distribution
- Statistics for Reco Lambda is sufficient for extracting polarization in 4 centrality bins

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi_p^*} = p_0(1 + 2p_1\sin(\Delta\phi_p^*) + 2p_2\cos(\Delta\phi_p^*) + 2p_3\sin(2\Delta\phi_p^*) + 2p_4\cos(2\Delta\phi_p^*) + \dots)$

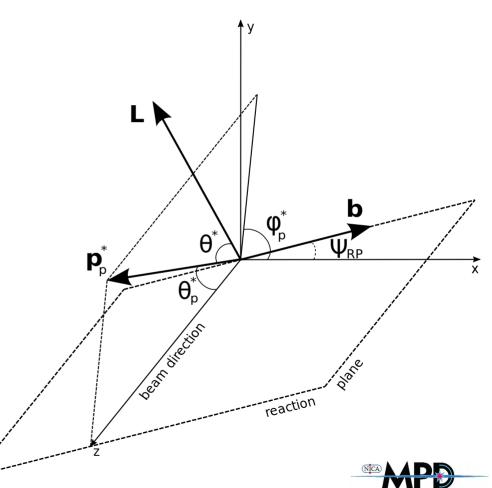
20.04.2023

Results (Reco, Lambda)

- Reconstructed polarization values using ω_2 selection for Lambda
- Uncertainties decrease with increasing statistics
- Results are in good agreement with MC values
- 50-100% (50-70%) centrality region: lowest statistics, smallest EP resolution

- Feasibility study of Lambda/ALambda polarization using official centralized MC production:
 - Request 30: PHSD, Bi-Bi @9.2GeV, 15M MB events, b [0,12]fm
 - Good agreement between reconstructed and model values of polarization
 preparation of obtained results for publication
- Implementation of the analysis within the MPD train framework
 - First version of the global polarization wagon for calculation of MC or RECO polarization is ready → will be added to mpdroot
 - > Utilizes Centrality and Event Plane wagons
 - > Lambda reconstruction using 1D topology selection (ω_2 parameter) based on maximum significance → ongoing work on adding different selection options, as well as another method of polarization extraction

Thank you for your attention!

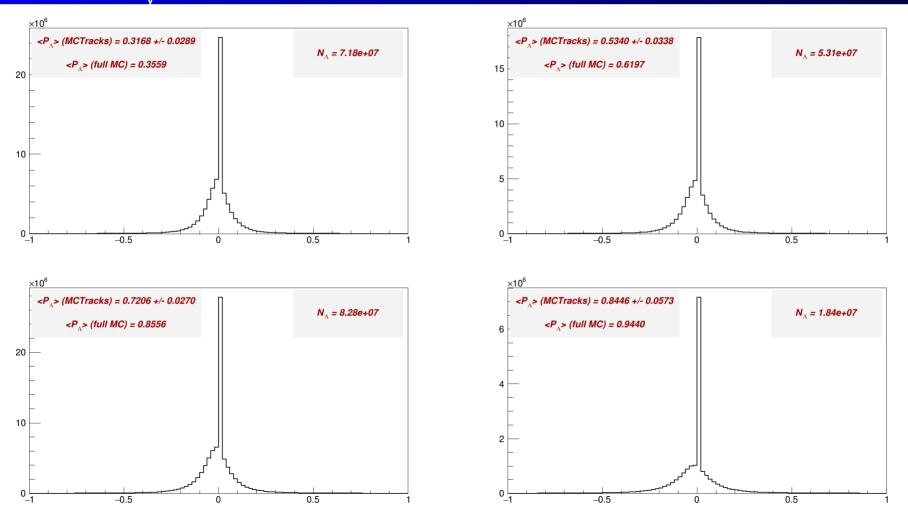


Back Up: Anisotropic decay of Lambda

- Calculate random $\cos\theta^*$ (from (1)) with |P|=1)
- $\alpha_{\bar{\Lambda}} = -\alpha_{\Lambda} = 0.732$
- φ^* random in [0,2 π]
- Construct unitary vector of proton
- Rotate it w.r.t. polarization direction
- Boost to the lab frame

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\mathrm{H}}|\vec{P_{\mathrm{H}}}|\cos\theta^*)$$
(1)

- <u>Testing</u>
 - Model values of polarization: mean value of P_v distribution (-|P_v|)
 - EP method used to measure polarization from (MC/Reco tracks)

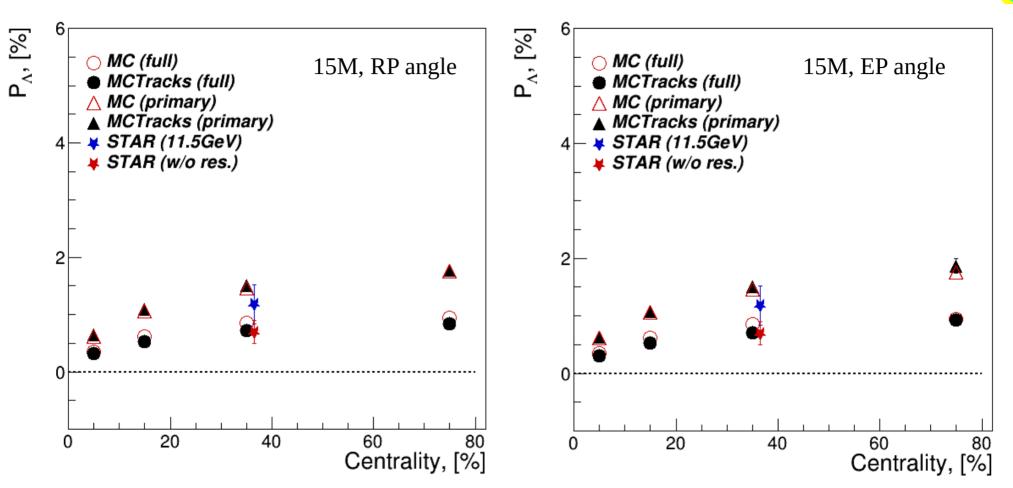


14.12.2022

26/30

Hyperon global polarization at MPD --- NICA-2022

Back Up: P, distributions (MC, Lambda)

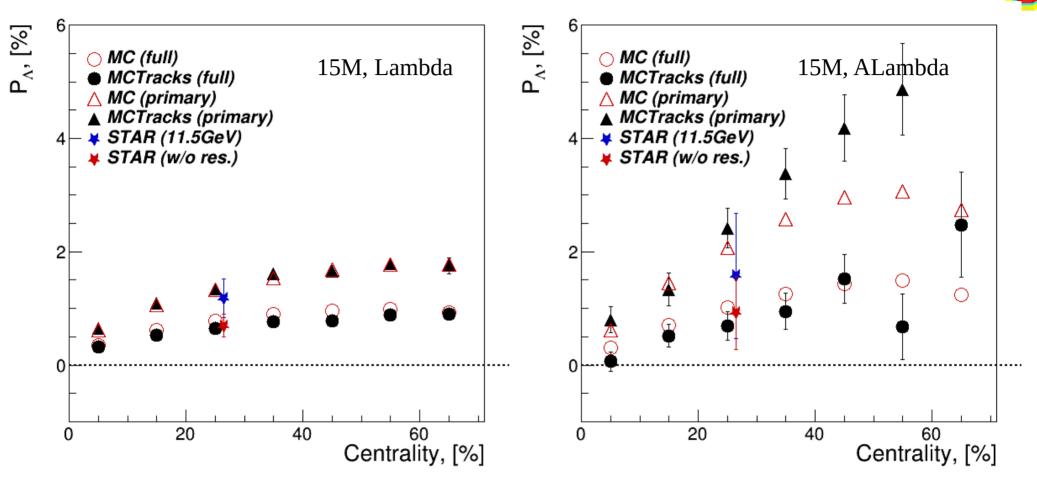


Hyperon global polarization at MPD --- NICA-2022

27/30

14.12.2022

Back Up: Results (MC, Lambda) — RP vs EP angle

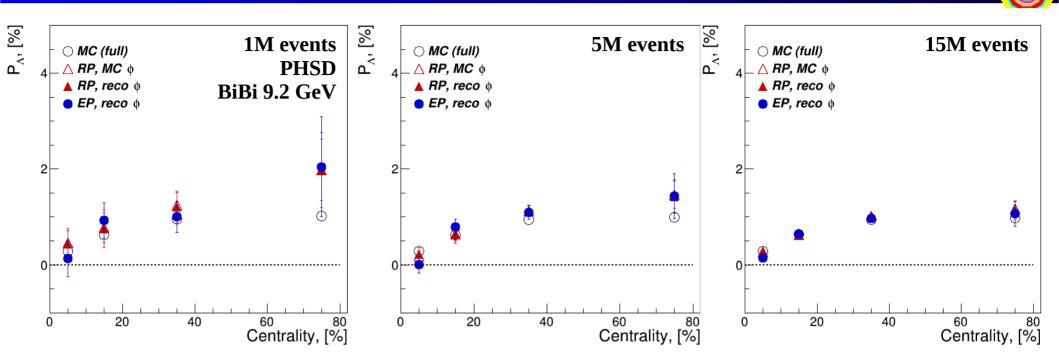


Using EP angle and its resolution instead of RP angle gives consistent results

Lambda global polarization studies with MPD

20.04.2023

Back Up: Results (MC, Lambda/ALambda)


Using RP angle instead pf EP angle. Calculated for 7 centrality bins.

Elizaveta Nazarova

Lambda global polarization studies with MPD

Back Up: Results (MCReco, Lambda)

- Fitting of angular distributions for «true» Lambda from Reco
- Using exact azimuthal angle (MC ϕ), reconstructed angle (reco ϕ) with RP angle
- Using reconstructed angle (reco $\boldsymbol{\phi}$) with EP angle and its resolution
- Consistent results between all choices