MPD CM

Skewness of the elliptic flow distribution from the MPD

Jovan Milošević University of Belgrade Vinča Institute of Nuclear Sciences, Serbia

on behalf of the Vinca MPD group and SPiRL Huzhou University

MPD XI-th Collaboration Meeting

Motivation

- Collectivity in nuclear collisions studied by Q-cumulants
- Centrality dependence of the hydrodynamic probes
- Central moments of the \mathbf{v}_2 distribution
- Do central moments change with incident energies?

Conclusions

Motivation

Azimuthal anisotropy

 Ψ_n (angle of nth-order flow symmetry plane)

v_n – Fourier harmonics depend on

- initial state geometry
- initial state fluctuations
- medium transport properties (e.g. η/s)

$$v_n = \left\langle \cos[n(\phi - \Psi_n)] \right\rangle$$

Event-by-event v_n distribution is not Gaussian-like

Shape of the v₂ distribution

Q-cumulants

v₂ shape studied via Q-cumulant method

 $\langle 2 \rangle \equiv \langle e^{in(\phi_1 - \phi_2)} \rangle$ **Multi-particle** $\langle 4 \rangle \equiv \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle$ correlations **Q-vector** $Q_n = \sum_{i=1}^{M} e^{in\varphi_i}$ $\langle 4 \rangle = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2\operatorname{Re}[Q_{2n}Q_n^*Q_n^*]}{M(M-1)(M-2)(M-3)}$ $\left< 2 \right> = \frac{\left| Q_n \right|^2 - M}{M(M - 1)}$ Ideal detector case $-2\frac{2(M-2)|Q_n|^2 - M(M-3)}{M(M-1)(M-2)(M-3)}$ Averaging over all events $\langle \langle 2 \rangle \rangle \equiv \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$ $\left< \left< 4 \right> \right> = \left< \left< e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right> \right>$

Formulas become more and more larger with an increase of the cumulant order

Q-cumulants and v_n

[Phys. Rev. C 104 (2021) 034906]:

$$c_{n} \{2k\} = \langle \langle 2k \rangle \rangle - \sum_{m=1}^{k-1} \binom{k}{m} \binom{k-1}{m} \langle \langle 2m \rangle \rangle c_{n} \{2k-2m\}$$

$$c_{n} \{2\} = \langle \langle 2 \rangle \rangle$$
General formulas
for any order
$$v_{n} \{4\} = \langle \langle 4 \rangle \rangle - 2\langle \langle 2 \rangle \rangle^{2}$$

$$v_{n} \{2k\} = {}_{2k} \frac{(2k)!}{2^{2k} (k!)^{2}} \left[\frac{d^{2k}}{dl^{2k}} \ln I_{0}(l) \Big|_{l=0} \right]^{-1} c_{n} \{2k\}$$

$$v_{n} \{2\} = \sqrt{c_{n} \{2\}}$$

$$v_{n} \{4\} = 4\sqrt{-c_{n} \{4\}}$$

Expansion of hydro probes in central moments

$$h_{1} = \frac{v_{2}\{6\} - v_{2}\{8\}}{v_{2}\{4\} - v_{2}\{6\}} \approx \frac{1}{11} - \frac{4\kappa_{40} + \frac{8(p_{50} + p_{32})}{\overline{v_{2}}}}{11\left[2\overline{v_{2}}s_{30} + 3(\kappa_{40} + \kappa_{22}) + \frac{3(p_{50} + 2p_{32} + p_{14}) - 2(\sigma_{y}^{2} - \sigma_{x}^{2})(5s_{30} - 6s_{12})}{2\overline{v_{2}}}\right]}$$

$$h_{2} = \frac{v_{2}\{8\} - v_{2}\{10\}}{v_{2}\{6\} - v_{2}\{8\}} \approx \frac{3}{19} - \frac{88p_{50}}{95\left[4\overline{v}_{2}^{2}s_{30} - 2\overline{v}_{2}(\kappa_{40} - 3\kappa_{22}) - 13(p_{50} + 10p_{32} - 3p_{14}) - 2(\sigma_{y}^{2} - \sigma_{x}^{2})(5s_{30} - 6s_{32})\right]}$$

If higher moments κ , p, ... negligible \rightarrow h_i are centrality independent

$$\frac{v_{2}\{6\} - v_{2}\{8\}}{v_{2}\{4\} - v_{2}\{6\}} \approx \frac{1}{11} - \frac{1}{11} \frac{v_{2}\{4\}^{2} - 12v_{2}\{6\}^{2} + 11v_{2}\{8\}^{2}}{v_{2}\{4\}^{2} - v_{2}\{6\}^{2} + \frac{(\sigma_{y}^{2} - \sigma_{x}^{2})s_{30}}{3\overline{v}_{2}^{3}}$$
negligible
$$\frac{v_{2}\{8\} - v_{2}\{10\}}{v_{2}\{6\} - v_{2}\{8\}} \approx \frac{3}{19} - \frac{1}{19} \frac{3v_{2}\{6\}^{2} - 22v_{2}\{8\}^{2} + 19v_{2}\{10\}^{2}}{v_{2}\{6\}^{2} - v_{2}\{8\}^{2} + \frac{(\sigma_{y}^{2} - \sigma_{x}^{2})s_{30}}{33\overline{v}_{2}^{3}}$$
OXI-th Collaboration Meeting

MPD XI-th Collaboration Meeting

20.04.2023

Hydrodynamics probes and central moments **NICA MPD case** JAM

v₂{2k} from Q-cumulants - NICA

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV
- In 10 multiplicity classes from 100 up to 1200
- PID: p, π^+ , π^- , $|\eta| < 1.5$, $p_T > 200 \text{ MeV/c}$
- v₂{2k} are well measured in semicentral collisions
- v₂{2k} are not well enough 0.05 ordered. It could be a problem with JAM itself.
- Codes for calculations with 0.04 and without efficiency corrections.
- closed circles (squares): results without (with) efficiency corrections (efficiency randomly distributed between 95 and 100%)
- With real data and real efficiencies the two results will differ.

- 0.0 < b < 12.0 fm
- stat.: 1.068 B events

hydro check 1 - NICA

 \Rightarrow AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV

- 0.0 < b < 12.0 fm
- stat.: 1.068 B events

- In 10 multiplicity classes from 100 up to 1200
- PID: p, π⁺, π⁻, |η| < 1.5, p_T > 200 MeV/c With condition: $v_2{4} > v_2{6} > v_2{8} > v_2{10}$

hydro check 2 - NICA

♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV

- 0.0 < b < 12.0 fm
- stat.: 1.068 B events

- In 10 multiplicity classes from 100 up to 1200
- PID: p, π⁺, π⁻, |η| < 1.5, p_T > 200 MeV/c

With condition: $v_2{4} > v_2{6} > v_2{8} > v_2{10}$

Skewness, kurtosis and

NICA MPD case vHLLE+UrQMD

v₂{2k} from Q-cumulants – NICA MPD

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.5 GeV
- In 10 centrality classes 0 50%
- PID: π^+ , π^- , $|\eta| < 1.5$, 0.2 < $p_T < 2.0 \text{ GeV/c}$

- Minimum bias
- stat.: 34 M events

Hydro probes vHLLE

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.5 GeV
 - In 10 centrality classes 0 up to 50%
- PID: π^+ , π^- , $|\eta| < 1.5$, 0.2 < $p_T < 2.0 \text{ MeV/c}$

Vc Without condition: $v_2{4} > v_2{6} > v_2{8} > v_2{10}$

0.0 < b < 12.0 fm

stat.: 34 M events

If centrality independent, this ratio should be 1/11 = 0.090909....

Points are reconstructed by chance. Statistics is to small

Note: If a proper cumulant ordering exists in the real data, that would significantly decrease the stat. uncertainties

Elliptic power distributions

In order to increase the statistics at NICA top energy, we used elliptic power distribution (EPD)

$$\frac{dN}{d\varepsilon_2} = 2\alpha (1-\varepsilon_0^2)^{\alpha+1/2} \varepsilon_2 \frac{(1-\varepsilon_2^2)^{\alpha-1}}{(1+\varepsilon_0\varepsilon_2)^{2\alpha+1}} {}_2F_1\left(\frac{1}{2}, 2\alpha+1; 1; \frac{2\varepsilon_0\varepsilon_2}{1+\varepsilon_0\varepsilon_2}\right)$$

where α and ε_0 are power and ellipticity parameters obtained by Trento. The scaling factor κ_2 between the v_2 and initial eccentricity ε_2 , $v_2 = \kappa_2 \varepsilon_2$, is chosen to imitate the MPD v_2 centrality distribution \diamond The scaling factor κ_2 is obtained by fitting v_2 {4} vHLLE with pol3 \diamond Small vHLLE statistics could cause a poor v_2 {4} reconstruction. As a consequence, this can make a wrong positioning of v_2 {2} and higher v_2 {2k}, k=3,4,...

Expectation: NICA MPD will collect about 1B MB events per year. That should be enough to perform precise enough measurements of the hydro probes and central moments

Hydro probes vHLLE

♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.5 GeV
♦ PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

- In 9 centrality classes 5 up to 50%
- PID: π^+ , π^- , $|\eta| < 1.5$, 0.2 < $p_T < 2.0$ GeV/c PID: charged, $|\eta| < 2.4$, 0.5 < $p_T < 3.0$ GeV/c

Trento prediction gives values and shape similar to the CMS experimental measurements

It could be the case, if α and ε_0 does not depend on incident energy.

A long time of collision at the NICA energy can wash out it and change initial conditions significantly wrt LHC energies 20.04.2023

Trento prediction: AuAu, 11.5 GeV, vHLLE+UrQMD

MPD XI-th Collaboration Meeting

Skewness from the EPD

♦ PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.5 GeV

- In 9 centrality classes 5 up to 50%
- PID: π^+ , π^- , $|\eta| < 1.5$, 0.2 < $p_{\tau} < 2.0 \text{ GeV/c}$ PID: charged, $|\eta| < 2.4, 0.5 < p_T < 3.0 \text{ GeV/c}$

Machine learning & cumulant splitting

- The most simple case
- Fixed *v*₂=0.02
- Fixed and high number of tracks
- Training 90k events, test 10k events

A simple toy model to simulate v_2 only

Stat.: 100 k events with 500 tracks

XGBoost Machine Learning model used to reconstruct v_2 (with 1M estimators)

ML learns from $v_2 = \langle \cos(2\phi) \rangle$ values calculated in each event (training)

ML nicely reproduces the mean value and its statistical uncertainty

ML prediction:

Machine learning & cumulant splitting

ML prediction:

- In 4 the most central classes 0 up to 20%
- Realistic multiplicity dependence (from vHLLE)
- PID: π^+ , π^- , $|\eta| < 1.5$, 0.2 < $p_T < 2.0 \text{ GeV/c}$

Again a simple toy model to 0.05 Calc simulate v_2 with realistic values Train 10000 ML Stat.: 100 k events in each 0.04 centrality class ρ_{corr} = 0.813 XGBoost Machine Learning 0.03 model used to reconstruct v_2 >~ ML learns from $v_2 = \langle \cos(2\phi) \rangle$ values calculated in each event 0.02 (training: 10/100k) ML nicely reproduces the mean 0.01 value and its statistical uncertainty 0.00 High correlation between 200 300 400 100 500 calculated and ML predicted Multiplicity values

20.04.2023

MPD XI-th Collaboration Meeting

Machine learning & cumulant splitting

- In 4 the most central classes 0 up to 20%
- **Realistic multiplicity dependence (from vHLLE)**
- PID: π⁺, π⁻, |η| < 1.5, 0.2 < p_T < 2.0 GeV/c

ML prediction:

MPD XI-th Collaboration Meeting

20 04 2023

Conclusions

- At NICA energy huge statistics is needed to perform measurements of the hydrodynamics probes and central moments
- We ran JAM and vHLLE+UrQMD model
- JAM analysis performed with a high statistics, but seems there is no splitting between cumulants
- vHLLE+UrQMD should have splitting, but the current statistics is too small
- We used a toy EPD model with parameters obtained from Trento and vHLLE data to increase the statistics
- We started to use ML in order to see is it able to recognize the cumulant splitting, and to properly measure hydro probes and central v₂ moments
- Expectation: NICA MPD will collect about 1B MB events per year. That should be enough to perform precise enough measurements of the hydro probes and central moments

Backup

Hydrodynamics probes and central moments LHC CMS case

v₂ from Q-cumulants at LHC energy

- Flow fluctuations, σ_{v₁} -> a gap between v₂{2} and higher-order cumulants based v₂{2k}: v₂{2}² = v₂{2k}² + 2σ_v², for (k>1)
- Syst. uncertainties ~ 2 orders of magnitude greater wrt stat. ones

fine splitting

$$v_2\{4\} \succ v_2\{6\} \succ v_2\{8\} \succ v_2\{10\}$$

Standardized & Corrected moments

$$\gamma_1^{\exp} = -2^{3/2} \frac{v_2 \{4\}^3 - v_2 \{6\}^3}{\left[v_2 \{2\}^2 - v_2 \{4\}^2\right]^{3/2}} \approx -2^{3/2} \frac{-s_{30} - O_N}{\left[2\sigma_x^2 + O_D\right]^{3/2}} \approx \frac{s_{30}}{\sigma_x^3} \equiv \gamma_1$$

$$\gamma_{2}^{\exp} = -\frac{3}{2} \frac{v_{2} \{4\}^{4} - 12v_{2} \{6\}^{4} + 11v_{2} \{8\}^{4}}{\left[v_{2} \{2\}^{2} - v_{2} \{4\}^{2}\right]^{2}} \approx \frac{\kappa_{40}}{\sigma_{x}^{4}} \equiv \gamma_{2}$$
 Kurtosis

$$\gamma_{3}^{\exp} = 6\sqrt{2} \frac{3v_{2}\{6\}^{5} - 22v_{2}\{8\}^{5} + 19v_{2}\{10\}^{5}}{\left[v_{2}\{2\}^{2} - v_{2}\{4\}^{2}\right]^{5/2}} \approx \frac{p_{50}}{\sigma_{x}^{5}} \equiv \gamma_{3}$$
 Superskewness

Conditions: $s_{12} \approx \frac{s_{30}}{3}$ $\kappa_{22} \approx \frac{\kappa_{40}}{3}$ $p_{32} \approx p_{14} \approx \frac{p_{50}}{5}$ Ell. pow. distr. param. $\varepsilon_0 \le 0.15$ $\gamma_{1,corr}^{\exp} = -2^{3/2} \frac{187v_2 \{8\}^3 - 16v_2 \{6\}^3 - 171v_2 \{10\}^3}{\left[v_2 \{2\}^2 - 40v_2 \{6\}^2 + 495v_2 \{8\}^2 - 456v_2 \{10\}^2\right]^{3/2}}$

PRC 99 (2019) 014907

Important for the initial-stats → Important for a proper hydro description

v₂{2k} from Q-cumulants - NICA

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.5 GeV
- In 10 centrality classes
- PID: p, π^+ , π^- , p_T > 300 MeV/c
- AuAu, 11.5 GeV, vHLLE+UrQMD v₂{2k} are well measured in semicentral collisions As hydro model, v_2 {2k} 0.06 should be well enough ordered. Statistics is about 60 times 0.05 smaller wrt CMS data. **⟨YZ⟩**^{0.04} ∧ 0.03 With real data (1 B MB) v_2 {2k} could be well measured With the current statistics, v₂{2} the condition v₂{4} 0.02 v_{6} v_{8} $v_2{4} > v_2{6} > v_2{8} > v_2{10}$ v₂{10} v_{12} v_{14} 0.01 is not satisfied in any bin. So, hydro probes and central moments cannot be measured 50 60 20 30 40 70 80 90 100 10 Centrality (%)

- Minimum bias
- stat.: 34 M events

v_n{10} from Q-cumulants

10-th order Q-cumulant $\langle \langle 10 \rangle \rangle = \langle \langle e^{in(\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 - \phi_6 - \phi_7 - \phi_8 - \phi_9 - \phi_{10})} \rangle \rangle$ $c_n \{10\} = \langle \langle 10 \rangle \rangle - 25 \cdot \langle \langle 2 \rangle \rangle \langle \langle 8 \rangle \rangle - 100 \cdot \langle \langle 4 \rangle \rangle \langle \langle 6 \rangle \rangle$ $+400 \cdot \langle \langle 6 \rangle \rangle \langle \langle 2 \rangle \rangle^2 + 900 \cdot \langle \langle 2 \rangle \rangle \langle \langle 4 \rangle \rangle^2$ $-360 \cdot \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle^3 + 2880 \cdot \langle \langle 2 \rangle \rangle^5$ **• For the first time v_n{10}** $v_n \{10\} = \sqrt[10]{\frac{1}{456}} c_n \{10\}$

Statistical uncertainties of the v_n {2k} (k=1,...,5) cumulants are calculated analytically using the data [Phys. Rev. C 104 (2021) 034906 arXiv:2104.00588 [nucl-th]]

 $s^{2}[v_{n} \{10\}] \cdot 4560^{2}(v_{n} \{10\})^{18} = A^{2}\sigma_{\langle\langle2\rangle\rangle}^{2} + B^{2}\sigma_{\langle\langle4\rangle\rangle}^{2} \qquad A = 14400 \langle\langle2\rangle\rangle^{4} - 10800 \langle\langle2\rangle\rangle^{2} \langle\langle4\rangle\rangle$ $+ C^{2}\sigma_{\langle\langle6\rangle\rangle}^{2} + D^{2}\sigma_{\langle\langle8\rangle\rangle}^{2} + \sigma_{\langle\langle10\rangle\rangle}^{2} + 2AB\sigma_{\langle\langle2\rangle\rangle,\langle\langle4\rangle\rangle}$ $+ 2AC\sigma_{\langle\langle2\rangle\rangle,\langle\langle6\rangle\rangle} + 2AD\sigma_{\langle\langle2\rangle\rangle,\langle\langle8\rangle\rangle} + 2A\sigma_{\langle\langle2\rangle\rangle,\langle\langle10\rangle\rangle}$ $+ 2BC\sigma_{\langle\langle4\rangle\rangle,\langle\langle6\rangle\rangle} + 2BD\sigma_{\langle\langle4\rangle\rangle,\langle\langle8\rangle\rangle} + 2B\sigma_{\langle\langle4\rangle\rangle,\langle\langle10\rangle\rangle}$ $+ 2CD\sigma_{\langle\langle6\rangle\rangle,\langle\langle8\rangle\rangle} + 2C\sigma_{\langle\langle6\rangle\rangle,\langle\langle10\rangle\rangle} + 2D\sigma_{\langle\langle8\rangle\rangle,\langle\langle10\rangle\rangle}$ $C = 400 \langle\langle2\rangle\rangle^{2} - 100 \langle\langle4\rangle\rangle$ $D = -25 \langle\langle2\rangle\rangle$

Ratio between probe and its Taylor expansion

Ratio between the new probe and its Taylor expansion

$v_2{2k}/v_2{2}$

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV
 In 10 multiplicity classes from 100 up to 1200
 - PID: p, π⁺, π⁻, |η| < 1.5, p_T > 200 MeV/c
- 0.0 < b < 12.0 fm, stat.: 1.068 B events

AuAu, 11 GeV, JAM

$v_2{2k}/v_2{4}$

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV In 10 multiplicity classes from 100 up to 1200
- PID: p, π^+ , π^- , $|\eta| < 1.5$, $p_T > 200$ MeV/c 0.0 < b < 12.0 fm, stat.: 1.068 B events

AuAu, 11 GeV, JAM

$v_2{2k}/v_2{6}$

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV In 10 multiplicity classes from 100 up to 1200
- PID: p, π⁺, π⁻, |η| < 1.5, p_T > 200 MeV/c
 0.0 < b

• 0.0 < b < 12.0 fm, stat.: 1.068 B events

AuAu, 11 GeV, JAM

$v_{2}{2k}/v_{2}{8}$

- ♦ AuAu collisions at $\sqrt{s_{NN}}$ = 11.0 GeV In 10 multiplicity classes from 100 up to 1200
 - PID: p, π⁺, π⁻, |η| < 1.5, p_T > 200 MeV/c
- 0.0 < b < 12.0 fm, stat.: 1.068 B events •

AuAu, 11 GeV, JAM

- 400-800 is still visible: $v_2{8} > v_2{10}$ It seems that the
- splitting from JAM becomes more and more fine with an increase of k, which is correct.
 - Anyhow, we could expect splitting in the experimental MPD NICA data