XI MPD Collaboration Meeting

In-Medium Modifications of Meson States and Higher-Order Cumulants

Abdel Nasser Tawfik

Future University in Egypt (FUE), Egyptian Center for Theoretical Physics (WCTP),
World Laboratory for Cosmology And Particle Physics (WLCAPP)
a.tawfik@fue.edu.eg

Outline

- QCD-like effective model, Polyakov linear-sigma model:
- A novel estimation of the finite Isospin asymmetry
- The inclusion of finite magnetic field
- In-medium modifications of various meson states
- Statistical thermal model, Hadron resonance gas model:
- In-medium modifications of multiplicity and particle ratios
- Higher-order moments compared with experimental results
- Conclusions

Polyakov Linear-Sigma Model

In the mean-field approximation (MFA), the PLSM thermodynamic potential can be related the to grand-canonical function \mathcal{Z}, which is given in dependence of the temperatures T and the chemical potentials of f-th quark flavor μ_{f},

$$
\begin{equation*}
\Omega\left(T, \mu_{f}\right)=\frac{-T \cdot \ln [\mathcal{Z}]}{V}=U\left(\sigma_{u}, \sigma_{d}, \sigma_{s}\right)+\mathcal{U}_{\mathrm{Fuku}}(\phi, \bar{\phi}, T)+\Omega_{\bar{\psi} \psi}\left(T, \mu_{f}\right) . \tag{17}
\end{equation*}
$$

The chemical potentials μ_{f} are related to conserved quantum numbers of - for instance - baryon number (B), strangeness (S), electric charge (Q), and isospin (I) of each quark flavors,

$$
\begin{align*}
& \mu_{u}=\frac{\mu_{B}}{3}+\frac{2 \mu_{Q}}{3}+\frac{\mu_{I}}{2} \tag{18}\\
& \mu_{d}=\frac{\mu_{B}}{3}-\frac{\mu_{Q}}{3}-\frac{\mu_{I}}{2} \tag{19}\\
& \mu_{s}=\frac{\mu_{B}}{3}-\frac{\mu_{Q}}{3}-\mu_{S} \tag{20}
\end{align*}
$$

Polyakov Linear-Sigma Model

In expression (17), the first term $U\left(\sigma_{u}, \sigma_{d}, \sigma_{s}\right)$; the potential of the pure mesonic contributions, was given Eq. (16), while the second term $\mathcal{U}_{\text {Fuku }}(\phi, \bar{\phi}, T)$, the potential of Polyakov loop variables, was elaborate The last term refers to the quarks and antiquarks contributions to the PLSM potential

$$
\begin{equation*}
\Omega_{\bar{\psi} \psi}\left(T, \mu_{f}\right)=-2 T \sum_{f=u, d, s} \int_{0}^{\infty} \frac{d^{3} \vec{P}}{(2 \pi)^{3}} \ln \left[1+n_{q, f}\left(T, \mu_{f}\right)\right]+\ln \left[1+n_{\bar{q}, f}\left(T, \mu_{f}\right)\right] \tag{21}
\end{equation*}
$$

where the number density distribution for particle is given as

$$
\begin{equation*}
n_{q, f}\left(T, \mu_{f}\right)=3\left(\phi+\bar{\phi} e^{-\frac{E_{f}-\mu_{f}}{T}}\right) \times e^{-\frac{E_{f}-\mu_{f}}{T}}+e^{-3 \frac{E_{f}-\mu_{f}}{T}} \tag{22}
\end{equation*}
$$

which is identical to that of anti-particle $n_{q, f}\left(T, \mu_{f}\right)$ with $-\mu_{f}$ replacing $+\mu_{f}$ and the order parameter ϕ by its conjugate $\bar{\phi}$ or vice versa. $E_{f}=\left(\vec{P}^{2}+m_{f}^{2}\right)^{1 / 2}$ is the energy-momentum dispersion relation withpormez ${ }^{3}$ being the mass of $f^{t h}$ quark flavor.

Polyakov Linear-Sigma Model

Polyakov Linear-Sigma Model

Polyakov Linear-Sigma Model

PLSM in Vanishing Magnetic Field

At vanishing magnetic field $(e B=0)$ but finite temperature (T) and baryon chemical potential $\left(\mu_{f}\right)$,

$$
\begin{aligned}
& \Omega_{\bar{q} q}\left(T, \mu_{f}\right)=-2 T \sum_{f=l, s} \int_{0}^{\infty} \frac{d^{3} \vec{p}}{(2 \pi)^{3}} \times \\
& \left\{\ln \left[1+3\left(\phi+\phi^{*} e^{-\frac{E_{f}-\mu_{f}}{T}}\right) e^{-\frac{E_{f}-\mu_{f}}{T}}+e^{-3 \frac{E_{f}-\mu_{f}}{T}}\right]\right. \\
& \left.+\ln \left[1+3\left(\phi^{*}+\phi e^{-\frac{E_{f}+\mu_{f}}{T}}\right) e^{-\frac{E_{f}+\mu_{f}}{T}}+e^{-3 \frac{E_{f}+\mu_{f}}{T}}\right]\right\}
\end{aligned}
$$

PLSM in Finite Magnetic Field

At finite magnetic background $(e B \neq 0)$ where the magnetic field $\vec{B}=B \hat{e_{z}}$, all the spin directions should

$$
\begin{aligned}
& \Omega_{\bar{q} q}\left(T, \mu_{f}, B\right)=-\sum_{f=l, s} \frac{\left|q_{f}\right| B T}{(2 \pi)^{2}} \sum_{\nu=0}^{\nu_{m a x}}\left(2-\delta_{0 \nu}\right) \int_{0}^{\infty} d p_{z} \times \\
& \left\{\ln \left[1+3\left(\phi+\phi^{*} e^{-\frac{E_{B, f}-\mu_{f}}{T}}\right) e^{-\frac{E_{B, f}-\mu_{f}}{T}}+e^{-3 \frac{E_{B, f}-\mu_{f}}{T}}\right]\right. \\
& \left.+\ln \left[1+3\left(\phi^{*}+\phi e^{-\frac{E_{B, f}+\mu_{f}}{T}}\right) e^{-\frac{E_{B, f}+\mu_{f}}{T}}+e^{-3 \frac{E_{B, f}+\mu_{f}}{T}}\right]\right\}
\end{aligned}
$$

PLSM: Quark Condensates at vanishing eB

PLSM: Thermodynamics at finite eB

PLSM: Magnetization

PLSM: QCD Phase Diagram at finite eB

Indian J.Phys. 91 (2017) 1, 93-99

PLSM: QCD Phase Diagram at finite eB

PLSM: Chiral Phase Structure

The masses are defined by the second derivative of the grand potential

$$
\Omega(T, \mu)=\frac{-T \ln \mathcal{Z}}{V}=U\left(\sigma_{x}, \sigma_{y}\right)+\mathcal{U}\left(\phi, \phi^{*}, T\right)+\Omega_{\bar{q} q}\left(T, \mu_{f}\right) .
$$

evaluated at its minimum with respect to the corresponding fields.

- In the present calculations, the minima are estimated by vanishing expectation values of all scalar, pseudoscalar, vector and axial-vector fields.
- The pure strange and non-strange condensates are finite.

$$
m_{i, a b}^{2}=\left.\frac{\partial^{2} \Omega\left(T, \mu_{f}\right)}{\partial \zeta_{i, a} \partial \zeta_{i, b}}\right|_{\min }
$$

where i stands for scalar, pseudoscalar, vector and axial-vector mesons and a and b range from $0, \ldots, 8$.

- Invacuum, mesonic sectors are formulated in non-strange and strange basis.

Polyakov Linear-Sigma Model

The Lagrangian of LSM with $N_{f}=3$ quark flavors and $N_{c}=3$ color degrees of freedom, where the quarks couple to the Polyakov-loop dynamics s $\$$-field represents a complex (3×3)-matrix for the $S U(3)_{L} \times S U(3)_{R}$ symmetric $L S M$ Lagrangian $\mathcal{L}_{\text {chiral }}=\mathcal{L}_{q}+\mathcal{L}_{m}$, where the fermionic part reads

$$
\mathcal{L}_{q}=\bar{q}\left[i \phi-g T_{a}\left(\sigma_{a}+i \gamma_{5} \pi_{a}+\gamma_{\mu} V_{a}^{\mu}+\gamma_{\mu} \gamma_{5} A_{a}^{\mu}\right)\right] q
$$

with μ is an additional Lorentz index \rfloor, g is the flavor-blind Yukawa coupling of the quarks to the mesonic contribution $\mathcal{L}_{m}=\mathcal{L}_{S P}+\mathcal{L}_{V A}+\mathcal{L}_{I n t}+\mathcal{L}_{U(1) A}$ represented to $\mathcal{L}_{S P}$ scalars $\left(J^{P C}=0^{++}\right)$and pseudoscalars $\left(J^{P C}=\right.$ $\left.0^{-+}\right), \mathcal{L}_{V A}$ to vectors $\left(J^{P C}=1^{-}\right)$and axial-vectors $\left(J^{P C}=1^{++}\right)$mesons and $\mathcal{L}_{\text {Int }}$ being the interaction between them. Finally the Lagrangian of the anomaly term is given by $\mathcal{L}_{U(1)_{A}}$

Polyakov Linear-Sigma Model

$$
\begin{aligned}
\mathcal{L}_{S P} & =\operatorname{Tr}\left(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi-m^{2} \Phi^{\dagger} \Phi\right)-\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}-\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)^{2}+\operatorname{Tr}\left[H\left(\Phi+\Phi^{\dagger}\right)\right] \\
\mathcal{L}_{A V} & =-\frac{1}{4} \operatorname{Tr}\left(L_{\mu \nu}^{2}+R_{\mu \nu}^{2}\right)+\operatorname{Tr}\left[\left(\frac{m_{1}^{2}}{2}+\Delta\right)\left(L_{\mu}^{2}+R_{\mu}^{2}\right)\right] \\
& +i \frac{g_{2}}{2}\left(\operatorname{Tr}\left\{L_{\mu \nu}\left[L^{\mu}, L^{\nu}\right]\right\}+\operatorname{Tr}\left\{R_{\mu \nu}\left[R^{\mu}, R^{\nu}\right]\right\}\right) \\
& +g_{3}\left[\operatorname{Tr}\left(L_{\mu} L_{\nu} L^{\mu} L^{\nu}\right)+\operatorname{Tr}\left(R_{\mu} R_{\nu} R^{\mu} R^{\nu}\right)\right]+g_{4}\left[\operatorname{Tr}\left(L_{\mu} L^{\mu} L_{\nu} L^{\nu}\right)+\operatorname{Tr}\left(R_{\mu} R^{\mu} R_{\nu} R^{\nu}\right)\right] \\
& +g_{5} \operatorname{Tr}\left(L_{\mu} L^{\mu}\right) \operatorname{Tr}\left(R_{\nu} R^{\nu}\right)+g_{6}\left[\operatorname{Tr}\left(L_{\mu} L^{\mu}\right) \operatorname{Tr}\left(L_{\nu} L^{\nu}\right)+\operatorname{Tr}\left(R_{\mu} R^{\mu}\right) \operatorname{Tr}\left(R_{\nu} R^{\nu}\right)\right], \\
\mathcal{L}_{I n t} & =\frac{h_{1}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(L_{\mu}^{2}+R_{\mu}^{2}\right)+h_{2} \operatorname{Tr}\left[\left|L_{\mu} \Phi\right|^{2}+\left|\Phi R_{\mu}\right|^{2}\right]+2 h_{3} \operatorname{Tr}\left(L_{\mu} \Phi R^{\mu} \Phi^{\dagger}\right), \\
\mathcal{L}_{U(1)_{A} A} & =c\left[\operatorname{Det}(\Phi)+\operatorname{Det}\left(\Phi^{\dagger}\right)\right]+c_{0}\left[\operatorname{Det}(\Phi)-\operatorname{Det}\left(\Phi^{\dagger}\right)\right]^{2}+c_{1}\left[\operatorname{Det}(\Phi)+\operatorname{Det}\left(\Phi^{\dagger}\right)\right] \operatorname{Tr}\left[\Phi \Phi^{\dagger}\right] .
\end{aligned}
$$

PLSM: Chiral Phase Structure

- Scalar meson masses are given as

$$
\begin{aligned}
m_{a_{0}}^{2} & =m^{2}+\lambda_{1}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)+\frac{3 \lambda_{2}}{2} \bar{\sigma}_{x}^{2}+\frac{\sqrt{2} c}{2} \bar{\sigma}_{y}, \\
m_{\kappa}^{2} & =m^{2}+\lambda_{1}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)+\frac{\lambda_{2}}{2}\left(\bar{\sigma}_{x}^{2}+\sqrt{2} \bar{\sigma}_{x} \bar{\sigma}_{y}+2 \bar{\sigma}_{y}^{2}\right)+\frac{c}{2} \bar{\sigma}_{x}, \\
m_{\sigma}^{2} & =m_{s, 00}^{2} \cos ^{2} \theta_{s}+m_{s, 88}^{2} \sin ^{2} \theta_{s}+2 m_{s, 08}^{2} \sin \theta_{s} \cos \theta_{s}, \\
m_{f_{0}}^{2} & =m_{s, 00}^{2} \sin ^{2} \theta_{s}+m_{s, 88}^{2} \cos ^{2} \theta_{s}-2 m_{s, 08}^{2} \sin \theta_{s} \cos \theta_{s},
\end{aligned}
$$

$$
m_{i, a b}^{2}=\left.\frac{\partial^{2} \Omega\left(T, \mu_{f}\right)}{\partial \zeta_{i, a} \partial \zeta_{i, b}}\right|_{\min }
$$

with
s (scalar) refers to i in

$$
\begin{aligned}
& m_{s, 00}^{2}=m^{2}+\frac{\lambda_{1}}{3}\left(7 \bar{\sigma}_{x}^{2}+4 \sqrt{2} \bar{\sigma}_{x} \bar{\sigma}_{y}+5 \bar{\sigma}_{y}^{2}\right)+\lambda_{2}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)-\frac{\sqrt{2} c}{3}\left(\sqrt{2} \bar{\sigma}_{x}+\bar{\sigma}_{y}\right) \\
& m_{s, 88}^{2}=m^{2}+\frac{\lambda_{1}}{3}\left(5 \bar{\sigma}_{x}^{2}-4 \sqrt{2} \bar{\sigma}_{x} \bar{\sigma}_{y}+7 \bar{\sigma}_{y}^{2}\right)+\lambda_{2}\left(\frac{\bar{\sigma}_{x}^{2}}{2}+2 \bar{\sigma}_{y}^{2}\right)+\frac{\sqrt{2} c}{3}\left(\sqrt{2} \bar{\sigma}_{x}-\frac{\bar{\sigma}_{y}}{2}\right), \\
& m_{s, 08}^{2}=\frac{2 \lambda_{1}}{3}\left(\sqrt{2} \bar{\sigma}_{x}^{2}-\bar{\sigma}_{x} \bar{\sigma}_{y}-\sqrt{2} \bar{\sigma}_{y}^{2}\right)+\sqrt{2} \lambda_{2}\left(\frac{\bar{\sigma}_{x}^{2}}{2}-\bar{\sigma}_{y}^{2}\right)+\frac{c}{3 \sqrt{2}}\left(\bar{\sigma}_{x}-\sqrt{2} \bar{\sigma}_{y}\right) .
\end{aligned}
$$

PLSM: Chiral Phase Structure

- Pseudoscalar meson masses read

$$
\begin{aligned}
m_{\pi}^{2} & =m^{2}+\lambda_{1}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)+\frac{\lambda_{2}}{2} \bar{\sigma}_{x}^{2}-\frac{\sqrt{2} c}{2} \bar{\sigma}_{y} \\
m_{K}^{2} & =m^{2}+\lambda_{1}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)+\frac{\lambda_{2}}{2}\left(\bar{\sigma}_{x}^{2}-\sqrt{2} \bar{\sigma}_{x} \bar{\sigma}_{y}+2 \bar{\sigma}_{y}^{2}\right)-\frac{c}{2} \bar{\sigma}_{x} \\
m_{\eta^{\prime}}^{2} & =m_{p, 00}^{2} \cos ^{2} \theta_{p}+m_{p, 88}^{2} \sin ^{2} \theta_{p}+2 m_{p, 08}^{2} \sin \theta_{p} \cos \theta_{p} \\
m_{\eta}^{2} & =m_{p, 00}^{2} \sin ^{2} \theta_{p}+m_{p, 88}^{2} \cos ^{2} \theta_{p}-2 m_{p, 08}^{2} \sin \theta_{p} \cos \theta_{p}
\end{aligned}
$$

with $\tan 2 \theta_{i}=\frac{2 m_{i, 08}^{2}}{m_{i, 00}^{2}-m_{i, 88}^{2}}, i=s, p \quad \mathrm{p}$ (pseudoscalar) refers to i in

$$
\begin{aligned}
& m_{p, 00}^{2}=m^{2}+\lambda_{1}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)+\frac{\lambda_{2}}{3}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)+\frac{c}{3}\left(2 \bar{\sigma}_{x}+\sqrt{2} \bar{\sigma}_{y}\right) \\
& m_{p, 88}^{2}=m^{2}+\lambda_{1}\left(\bar{\sigma}_{x}^{2}+\bar{\sigma}_{y}^{2}\right)+\frac{\lambda_{2}}{6}\left(\bar{\sigma}_{x}^{2}+4 \bar{\sigma}_{y}^{2}\right)-\frac{c}{6}\left(4 \bar{\sigma}_{x}-\sqrt{2} \bar{\sigma}_{y}\right) \\
& m_{p, 08}^{2}=\frac{\sqrt{2} \lambda_{2}}{6}\left(\bar{\sigma}_{x}^{2}-2 \bar{\sigma}_{y}^{2}\right)-\frac{c}{6}\left(\sqrt{2} \bar{\sigma}_{x}-2 \bar{\sigma}_{y}\right)
\end{aligned}
$$

PLSM: Chiral Phase Structure

- Vector meson masses are given as

$$
\begin{aligned}
m_{\rho}^{2} & =m_{1}^{2}+\frac{1}{2}\left(h_{1}+h_{2}+h_{3}\right) \bar{\sigma}_{x}^{2}+\frac{h_{1}}{2} \bar{\sigma}_{y}^{2}+2 \delta_{x} \\
m_{K^{*}}^{2} & =m_{1}^{2}+\frac{\bar{\sigma}_{x}^{2}}{4}\left(g_{1}^{2}+2 h_{1}+h_{2}\right)+\frac{\bar{\sigma}_{x} \bar{\sigma}_{y}}{\sqrt{2}}\left(h_{3}-g_{1}^{2}\right)+\frac{\bar{\sigma}_{y}^{2}}{2}\left(g_{1}^{2}+h_{1}+h_{2}\right)+\delta_{x}+\delta_{y} \\
m_{\omega_{x}}^{2} & =m_{\rho}^{2} \\
m_{\omega_{y}}^{2} & =m_{1}^{2}+\frac{h_{1}}{2} \bar{\sigma}_{x}^{2}+\left(\frac{h_{1}}{2}+h_{2}+h_{3}\right) \bar{\sigma}_{y}^{2}+2 \delta_{y}
\end{aligned}
$$

and vectors V^{μ} refer to i

$$
m_{i, a b}^{2}=\left.\frac{\partial^{2} \Omega\left(T, \mu_{f}\right)}{\partial \zeta_{i, a} \partial \zeta_{i, b}}\right|_{\min }
$$

PLSM: Chiral Phase Structure

- And finally the axial-vectors masses are

$$
\begin{aligned}
m_{a_{1}}^{2} & =m_{1}^{2}+\frac{1}{2}\left(2 g_{1}^{2}+h_{1}+h_{2}-h_{3}\right) \bar{\sigma}_{x}^{2}+\frac{h_{1}}{2} \bar{\sigma}_{y}^{2}+2 \delta_{x} \\
m_{K_{1}}^{2} & =m_{1}^{2}+\frac{1}{4}\left(g_{1}^{2}+2 h_{1}+h_{2}\right) \bar{\sigma}_{x}^{2}-\frac{1}{\sqrt{2}} \bar{\sigma}_{x} \bar{\sigma}_{y}\left(h_{3}-g_{1}^{2}\right)+\frac{1}{2}\left(g_{1}^{2}+h_{1}+h_{2}\right) \bar{\sigma}_{y}^{2}+\delta_{x}+\delta_{y}, \\
m_{f_{1 x}}^{2} & =m_{a_{1}}^{2} \\
m_{f_{1 y}}^{2} & =m_{1}^{2}+\frac{\bar{\sigma}_{x}^{2}}{2} h_{1}+\left(2 g_{1}^{2}+\frac{h_{1}}{2}+h_{2}-h_{3}\right) \bar{\sigma}_{y}^{2}+2 \delta_{y} .
\end{aligned}
$$

and axialvector A^{μ} refer to i

$$
m_{i, a b}^{2}=\left.\frac{\partial^{2} \Omega\left(T, \mu_{f}\right)}{\partial \zeta_{i, a} \partial \zeta_{i, b}}\right|_{\min }
$$

PLSM: meson masses at $T=0$

Sector	Symbol	PDG	PLSM	PNJL	Lattice QCD	
					Hot QCD	PACS-CS
Scalar$J^{P C}=0^{++}$	a_{0}	$a_{0}\left(980^{ \pm 20}\right)$	1026	837		
	κ	$K_{0}^{*}\left(1425^{ \pm 50}\right)$	1115	1013		
	σ	$\sigma(400-1200)$	800	700		
	f_{0}	$f_{0}(1200-1500)$	1284	1169		
Pseudoscalar$J^{P C}=0^{-+}$	π	$\pi^{0}\left(134.97^{ \pm 6.9}\right)$	120	126	$134{ }^{ \pm 6}$	$135.4^{ \pm 6.2}$
	K	$K^{0}\left(497.614^{ \pm 24.8}\right)$	509	490	$422.6{ }^{ \pm 11.3}$	$498{ }^{ \pm 22}$
	η	$\eta\left(547.853^{ \pm 27.4}\right)$	553	505	$579^{ \pm 7.3}$	$688^{ \pm 32}$
	η^{\prime}	$\eta^{\prime}\left(957.78^{ \pm 60}\right)$	965	949	- -	
$\begin{gathered} \text { Vector } \\ J^{P C}=1^{-} \end{gathered}$	ρ	$\rho\left(775.49^{ \pm 38.8}\right)$	745	-	$756.2^{ \pm 36}$	$597{ }^{ \pm 86}$
	ω_{X}	$\omega\left(782.65^{ \pm 44.7}\right)$	745	-	$884^{ \pm 18}$	$861^{ \pm 23}$
	K^{*}	$K^{*}\left(891.66^{ \pm 26}\right)$	894	-	$1005^{ \pm 93}$	$1010.2^{ \pm 77}$
	ω_{y}	$\phi\left(1019.455^{ \pm 51}\right)$	1005	-	- -	
Axial-Vector$J^{P C}=1^{++}$	a_{1}	$a_{1}(1030-1260)$	980	-		
	$f_{1 x}$	$f_{1}\left(1281^{ \pm 60}\right)$	980	-		
	K_{1}^{*}	$K_{1}^{*}\left(1270^{ \pm 7}\right)$	1135	-		
	f_{19}	$f_{1}\left(1420^{ \pm 71.3}\right)$	1315	-		

PLSM: In-medium meson masses

Left-hand panel (LSM) and right-hand panel (PLSM):

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

Left-hand panel (LSM) and right-hand panel (PLSM):

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

PLSM: In-medium meson masses

Left- (LSM) and right-hand panel (PLSM) show scalar a_{0} (dashed curve) and σ (dotted curve) and pseudoscalar states η^{\prime} (solid curve) and π (dashed-dotted curve) as function of temperature at vanishing baryon-chemical potentials $\mu=0.0 \mathrm{MeV}$.

PLSM: In-medium meson masses

I Left- (LSM) and right-hand panel (PLSM) show scalars f_{0} (horizontal dashed curve) and κ (vertical dashed curve) and pseudascalars η (dotted curve) and K (solid curve) as functionof tefemperature at vanishing baryon-chemical potentials $\mu=0.0 \mathrm{MeV}$.

PLSM: In-medium meson masses

Left- (LSM) and right-hand panel (PLSM) present scalars a_{0} (dashed curve) and σ (dotted curve) and pseudoscalars η_{2} (solid curve) and π (dashed-dotted curve) in dense mediumat fixed temperature $T=10 \mathrm{MeV}$.

PLSM: In-medium meson masses

Left- (LSM) and right-hand panel (PLSM) show scalars f_{0} (horizontal dashed curve) and κ (vertical dashed curve) and pseudoscalars η (dotted curve) and K (solid curve) in dense medium at fixed temperature $T=10 \mathrm{MeV}$.

PLSM: Phase Structure Conclusions

- We have studies the thermal, dense and magnetic inmedium modifications of
$a_{0}, \sigma, \eta^{\prime}, \pi, f_{0}, \kappa, \eta, K, \rho, \omega, \kappa^{*}, \phi, a_{1}, f_{1}, K^{*}$ and f_{1}^{*}
meson states
- This study shall be extended to charged meson states, e.g., $K^{+}, K^{-}, \pi^{+}, \pi$, etc.
- The thermal and dense dependence of $K^{+} / \pi^{+}, K^{-} / \pi$, could be predicted, as well.
- Extending PLSM to include baryons is planned in near future.

Hadron Resonance Gas Model

For an ideal gas of hadron resonances

$$
\begin{aligned}
& Z(T, \mu, V)=\operatorname{Tr}\left[\exp ^{\left.\frac{\mu \mathrm{N}-\mathrm{H}}{\mathrm{~T}}\right]}\right. \\
& \ln Z\left(T, \mu_{i}, V\right)=\sum_{i} \ln Z_{i}^{1}(T, V)=\sum_{i} \pm \frac{V g_{i}}{2 \pi^{2}} \int_{0}^{\infty} k^{2} d k \ln \left\{1 \pm \exp \left[\left(\mu_{i}-\varepsilon_{i}\right) / T\right]\right\}
\end{aligned}
$$

where $\epsilon_{i}(k)=\left(k^{2}+m_{i}^{2}\right)^{1 / 2}$ is the i-th particle dispersion relation, g_{i} is spin-isospin degeneracy factor and \pm stands for bosons and fermions, respectively.

At finite temperature T and baryon chemical potential μ_{j} the pressure of the i-th hadron resonance reads

$$
p\left(T, \mu_{i}\right)= \pm \frac{g_{i}}{2 \pi^{2}} T \int_{0}^{\infty} k^{2} d k \ln \left\{1 \pm \exp \left[\left(\mu_{i}-\varepsilon_{i}\right) / T\right]\right\}
$$

Hadron Resonance Gas Model

Switching between hadron and quark chemistry is possible from the analytic relations between the hadronic chemical potentials and the quark constituents;

$$
\mu_{i}=3 n_{b} \mu_{q}+n_{s} \mu_{S}
$$

- The chemical potential assigned to the light quarks is $\mu_{q}=\left(\mu_{u}+\mu_{d}\right) / 2$ and the one assigned to strange quark reads $\mu_{s}=\mu_{q}-\mu_{s}$.
- The strangeness chemical potential μ_{s} is calculated as a function of T and μ_{n} under the assumption that the overall strange quantum number must remain conserved in heavy-ion collisions.
- The number density or particle multiplicity can be estimated as

$$
m_{1}\left(T, \mu_{i}\right)= \pm \frac{g_{i}}{2 \pi^{2}} T \int_{0}^{\infty} \frac{e^{\frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}}
$$

Hadron Resonance Gas Model

- The "second" order moment is known as the variance reads

$$
m_{2}\left(T, \mu_{i}\right)= \pm \frac{g_{i}}{2 \pi^{2}} T \int_{0}^{\infty} \frac{e^{\frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}}-\frac{g_{i}}{2 \pi^{2}} T \int_{0}^{\infty} \frac{e^{2 \frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{\left(1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}\right)^{2}}
$$

- The "third" order moment measures of the lopsidedness of the distribution

$$
m_{3}\left(T, \mu_{i}\right)= \pm \frac{g_{i}}{2 \pi^{2}} T \int_{0}^{\infty} \frac{e^{\frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}}-\frac{g_{i}}{2 \pi^{2}} 3 T \int_{0}^{\infty} \frac{e^{2 \frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{\left(1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}\right)^{2}} \pm \frac{g_{i}}{2 \pi^{2}} 2 T \int_{0}^{\infty} \frac{e^{\frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{\left(1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}\right)^{3}}
$$

- The "fourth" order moment compares the tallness and skinny or shortness and squatness, i.e., it defined the shape of the distribution

$$
m_{4}\left(T, \mu_{i}\right)= \pm \frac{g_{i}}{2 \pi^{2}} T \int_{0}^{\infty} \frac{e^{\frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{1 \pm e^{\frac{\mu_{i}-e_{i}}{T}}}-\frac{g_{i}}{2 \pi^{2}} 7 T \int_{0}^{\infty} \frac{e^{\frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{\left(1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}\right)^{2}} \pm \frac{g_{i}}{2 \pi^{2}} 12 T \int_{0}^{\infty} \frac{e^{3 \frac{\mu_{i}-\varepsilon_{i}}{T}}}{\left(1 \pm e^{2} d k\right.}\left(\frac{\mu_{i}-\varepsilon_{i}}{T}\right)^{3}
$$

$$
-\frac{g_{i}}{2 \pi^{2}} 6 T \int_{0}^{\infty} \frac{e^{4 \frac{\mu_{i}-\varepsilon_{i}}{T}} k^{2} d k}{\left(1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}\right)^{4}}
$$

Hadron Resonance Gas Model

- Now a general expression for the r-th order moment can be deduced

$$
m_{r}\left(T, \mu_{i}\right)=\frac{g_{i}}{2 \pi^{2}} T \sum_{l=1}^{r} a_{r, l} \int_{0}^{\infty} \frac{e^{l \frac{\mu_{i}-\varepsilon_{i}}{T}}}{\left(1 \pm e^{\frac{\mu_{i}-\varepsilon_{i}}{T}}\right)^{l}} k^{2} d k
$$

where the coefficients read

$$
a_{r, l}=(\pm 1)^{l}(-1)^{l+1}\left[l a_{r-1, l}+(l-1) a_{r-1, l-1}\right]
$$

$m_{2}=\left\langle(\delta N)^{2}\right\rangle \approx 2\langle N\rangle$,
$m_{3}=\left\langle(\delta N)^{3}\right\rangle \approx 4\langle N\rangle+C_{3}$,
$m_{4} \simeq\left\langle(\delta N)^{4}\right\rangle=6 m_{3}+3 m_{2}^{2}-8 m_{2}+8 C_{4}$,

$$
\begin{aligned}
\delta N=N & -\langle N\rangle \\
C_{3}\left(p_{1}, p_{2}, p_{3}\right) & =\sum_{p_{1}}\left\langle p_{1} p_{1} p_{1}\right\rangle+3+3 \sum_{p_{1}\left\langle p_{1}\right.}\left\langle p_{1} p_{2} p_{2}\right\rangle++6 \sum_{p_{1} p_{2}\left\langle p_{3}\right.}\left\langle p_{1} p_{2} p_{3}\right\rangle, \\
C_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) & =\sum_{p_{1}\left\langle p_{2}\right.}\left\langle p_{1} p_{2} p_{2} p_{2} p_{2}\right\rangle+\sum_{p_{1}\left\langlep _ { 2 } \left\langle p_{3}\right.\right.}\left\langle p_{1} p_{2} z_{3} 3_{3}\right\rangle+8 \sum_{p_{1}\left\langlep _ { 2 } \left\langlep _ { 3 } \left\langle p_{1}\right.\right.\right.}\left\langle p_{2} p_{3} p_{4}^{4}\right\rangle,
\end{aligned},
$$

Hadron Resonance Gas Model

- By considering the particle multiplicities,

$$
\begin{aligned}
& m_{2}=\left\langle(\delta N)^{2}\right\rangle \simeq\left\langle N^{2}\right\rangle-\langle N\rangle^{2} \\
& m_{3}=\left\langle(\delta N)^{3}\right\rangle \simeq\left\langle N^{3}\right\rangle-\left\langle N^{2}\right\rangle\langle N\rangle+2\left\langle N^{3}\right\rangle^{3} \\
& m_{4}=\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2} \simeq\left\langle\langle N\rangle^{4}\right\rangle-2\left\langle\left\langle N^{2}\right\rangle^{2}\right\rangle-5\left\langle\left\langle N^{2}\right\rangle\right\rangle^{2}+6\left\langle\langle N\rangle^{2}\right\rangle\left\langle\left\langle N^{2}\right\rangle\right\rangle \\
& P\left(T, \mu_{i}\right)=\frac{g_{i}}{2 \pi^{2}} T^{4} \sum_{n=1}^{\infty}(\pm)^{n+1} e^{n \frac{\mu_{i}}{T}}\left(n \frac{m_{i}}{T}\right)^{2} n^{-4} \mathrm{~K}_{2}\left(n \frac{m_{i}}{T}\right) \\
& m_{r}\left(T, \mu_{i}\right)=\frac{g_{i}}{2 \pi^{2}} T^{4} \sum_{n=1}^{\infty}(\pm)^{n+1} e^{n \frac{\mu_{i}}{T}}\left(n \frac{m_{i}}{T}\right)^{2} n^{r-4} \mathrm{~K}_{2}\left(n \frac{m_{i}}{T}\right)
\end{aligned}
$$

Hadron Resonance Gas Model

- Chemical Freezeout

$$
\begin{aligned}
& \frac{\sigma^{2}}{\langle N\rangle}=\frac{\sum_{n=1}^{\infty}(\pm)^{n+1} e^{n \frac{\mu_{i}}{T}}\left(n \frac{m_{i}}{T}\right)^{2} n^{-2} K_{2}\left(n \frac{m_{i}}{T}\right)}{\sum_{n=1}^{\infty}(\pm)^{n+1} e^{n \frac{\mu_{i}}{T}}\left(n \frac{m_{i}}{T}\right)^{2} n^{-3} K_{2}\left(n \frac{m_{i}}{T}\right)}, \\
& \kappa \sigma^{2}=\frac{\sum_{n=1}^{\infty}(\pm)^{n+1} e^{n \frac{\mu_{i}}{T}}\left(n \frac{m_{i}}{T}\right)^{2} K_{2}\left(n \frac{m_{i}}{T}\right)}{\sum_{n=1}^{\infty}(\pm)^{n+1} e^{n \frac{\mu_{i}}{T}}\left(n \frac{m_{i}}{T}\right)^{2} n^{-2} K_{2}\left(n \frac{m_{i}}{T}\right)} \\
& -3 \frac{g_{i}}{2 \pi^{2}} T^{4} \sum_{n=1}^{\infty}(\pm)^{n+1} e^{n \frac{\mu_{i}}{T}}\left(n \frac{m_{i}}{T}\right)^{2} n^{-2} K_{2}\left(n \frac{m_{i}}{T}\right) \text {. } \\
& \left(\kappa \sigma^{2}\right)_{b}=-\frac{1}{4} \frac{\int_{0}^{\infty}\left\{\cosh \left[\frac{\varepsilon_{i}-\mu_{i}}{T}\right]+2\right\} \operatorname{csch}\left[\frac{\varepsilon_{i}-\mu_{i}}{2 T}\right]^{4} k^{2} d k}{\int_{0}^{\infty}\left(1-\cosh \left[\frac{\varepsilon_{i}-\mu_{i}}{T}\right]\right)^{-1} k^{2} d k} \\
& +\frac{3 g_{i}}{4 \pi^{2}} \frac{1}{T^{3}} \int_{0}^{\infty}\left(1-\cosh \left[\frac{\varepsilon_{i}-\mu_{i}}{T}\right]\right)^{-1} k^{2} d k, \\
& \left(\kappa \sigma^{2}\right)_{f}=\frac{1}{4} \frac{\int_{0}^{\infty}\left\{\cosh \left[\frac{\varepsilon_{i}-\mu_{i}}{T}\right]-2\right\} \operatorname{Sech}\left[\frac{\varepsilon_{i}-\mu_{i}}{2 T}\right]^{4} k^{2} d k}{\int_{0}^{\infty}\left(\cosh \left[\frac{\varepsilon_{i}-\mu_{i}}{T}\right]+1\right)^{-1} k^{2} d k} \\
& -\frac{3 g_{i}}{4 \pi^{2}} \frac{1}{T^{3}} \int_{0}^{\infty}\left(\cosh \left[\frac{\varepsilon_{i}-\mu_{i}}{T}\right]+1\right)^{-1} k^{2} d k . \\
& \frac{\sigma^{2}}{\langle N\rangle}=S \sigma \\
& \kappa \sigma^{2} \simeq 1-3 \frac{g_{i}}{2 \pi^{2}} T^{4} \exp \left[\frac{\mu_{i}}{T}\right]\left(\frac{m_{i}}{T}\right)^{2} K_{2}\left(\frac{m_{i}}{T}\right)
\end{aligned}
$$

Hadron Resonance Gas Model

- Chemical Freezeout Physics of vanishing $\kappa \sigma^{2}$ or equivalently $m_{4}=3 \chi^{2}$

Higher-Order Moments in PLSM

The higher-order moment of the particle multiplicity is defined is
$m_{i}=\frac{\partial^{i}}{\partial \mu^{i}} \frac{p(T, \mu, B)}{T^{4}}$,

$p(T, \mu, B)=-T \partial \ln \mathcal{Z}(T, \mu, B) / \partial V$
$\ln \mathcal{Z}(T, \mu, B)=-V \Omega(T, \mu, B) / T$.

Higher-Order Moments in PLSM

- T-dependence of the second-order moment, at finite eB and μ

Higher-Order Moments in PLSM

- T-dependence of the third-order moment, at finite eB and μ

Higher-Order Moments in PLSM

Higher-Order Moments in PLSM \& Experiment

Freezeout Temperatures in PLSM

Higher-Order Moments in PLSM \& Experiment

Freezeout Temperatures in PLSM

Higher-Order Moments in PLSM \& Experiment

2020 STAR

Results

Higher-Order Moments in PLSM \& Experiment

With Non-Extensive Statistics (not necessarily of Tsallis-type)

Higher-Order Moments in PLSM \& Experiment

With Non-Extensive Statistics (not necessarily of Tsallis-type)

Conclusion: Higher-Order Moments

- We observe that HRGM excellently reproduces experimental multiplicity and particle ratios, i.e., first-order, why not the higher-order cumulants!
- The statistical nature seems to play an essential role
- Microcanonical (fixed energy), canonical (fixed temperature) or grand canonical ensemble (fixed T and μ)
- Extensive or nonextensive or generic (super) statistics
- Ideal static equilibrium or interacting dynamic nonequilibrium
- Indeed, if statistical nature is essential for higher-order cumulants, it is as well essential for multiplicity, as well!

Thank you!
 Спасибо!

