Track reconstruction with Acts for MPDRoot

Researchers: Pavel Belecky² (belecky@ispras.ru), Alexander Kamkin^{1,2} (kamkin@ispras.ru) with assistance of students: Erkenova Jamilya¹, Kozmin Ilya¹, Mikhalevich Dmitriy¹

¹Plekhanov Russian University of Economics (PRUE) ²Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

JINR, Dubna | April 19, 2023

Acts: A Common Tracking Software

- Open-source, being developed by CERN •
- Experiment-independent toolkit for particle track reconstruction •
- Implemented in modern C++ (-std=17) without minimal dependencies •
- Designed for multi-threaded data processing (GPU accelerators) •
- Machine-learning approaches •

Acts Tracking Stages

• Digitization

 \Rightarrow measurements (local coordinates, bound to surfaces)

• Space point making

 \Rightarrow space points (global coordinates)

• Seeding

 \Rightarrow seeds (3-point tracklets)

• Track parameter estimation

 \Rightarrow initial track parameters

- Track finding
 - \Rightarrow tracks (array of measurements)

Seeding Parameters (Part 1)

• Seed is a triplet of space points

Parameter	Description	Value
DeltaRMin	Minimum distance in R between two measurements within one seed	10 mm
DeltaRMax	Maximum distance in R between two measurements within one seed	60 mm
MaxSeedsPerSpM	How many seeds can one SP be the middle SP	3
DeltaZMax	Maximum value of delta R between SPs	10 cm

https://acts.readthedocs.io

Seeding Parameters (Part 2)

• Seed is a triplet of space points

Parameter	Description	Value
CotThetaMax	Cotangent of the maximum θ angle	2.0
SigmaScattering	How many sigmas of scattering angle should be considered	5
radLengthPerSeed	Average radiation lengths of material on the length of a seed. Used for scattering	0.05
MaxPtScattering	Upper limit for scattering calculation	5 GeV
ImpactMax	Maximum impact parameter	3 cm

https://acts.readthedocs.io

Track Parameter Estimation

• Tracking parameters: $(l_0, l_1, \varphi, \theta, q/p_T, t)$

Parameter	Value
σ (l ₀)	0.5 mm
σ (l ₁)	0.5 mm
σ (φ)	0.5 degree
σ (θ)	0.5 degree
σ (q/p _T)	0.1 GeV

https://acts.readthedocs.io

0

Ζ

(b)

Track Finding

- Track is a sequence of measurements
- Approach:

Combinatorial Kalman Filter

Parameter	Value
PropagationMaxSteps	1000
χ^2_{max}	30

https://acts.readthedocs.io

Example 1: Raw Monte Carlo Points (XY)

Plekhanov University | Belecky Pavel

Example 2: Geometry Aware Hits (XY)

Plekhanov University | Belecky Pavel

Previous To Do

- At the previous Meeting, such tasks were set:
 - + A deeper study of the effectiveness of track search
 - + Bringing virtual sensors in line with the geometry of real sites
 - **±** Methods of disambiguation and combining tracks
 - Comparison with the existing track search module

Statistics creation

- The Acts statistics was connected to tracker
- Statistics example:
 - Generator: UrQMD
 - Au-Au
 - Energy: 7 GeV
 - The number of events: 1000
 - Measurements
 - $|\eta| < 1.2$
 - $0.02 < p_T (GeV) < 2.5$

Particles:

- Kaons
- Muons
- Protons

Statistics: Efficiency vs p_T

Plekhanov University | Belecky Pavel

Statistics: Efficiency vs η

Plekhanov University | Belecky Pavel

Geometry

• Measurements are bound to surfaces \Rightarrow virtual sensors must be introduced

J.D. Osborn, A.D. Frawley, J. Huang, S. Lee, H.P. Da Costa, M. Peters, C. Pinkenburg, C. Roland, H. Yu. Implementation of ACTS into sPHENIX Track Reconstruction. Computing and Software for Big Science, 2021.

Geometry: Compare Results

- The number of events: 100
- Measurements

Geometry type	The number of layers (rows or cylinders)	Tracking efficiency
Sector-based	52	0.59
Cylinder-based	50	0.96
Cylinder-based	100	0.98
Cylinder-based	200	0.99

Ambiguity Resolution (Work In Progress)

- Ambiguity resolution
 - Post processing
 - Merge tracks
 - Drop fake tracks
- Performers:
 - Students (Plekhanov RUE)
 - Erkenova
 - Kozmin
 - Mikhalevich

Post processing stages:

- Cleaning
- Merging
- Smoothing

Post processing

Typical problem:

to the same trajectory

•

_

Measurements, belongin

Post Processing: Example

Post Processing: Example (Solved)

Further research

- Methods of disambiguation and combining tracks
 - Configure tracker options
 - Post-processing
- Comparison with the existing track search module

Thank you!