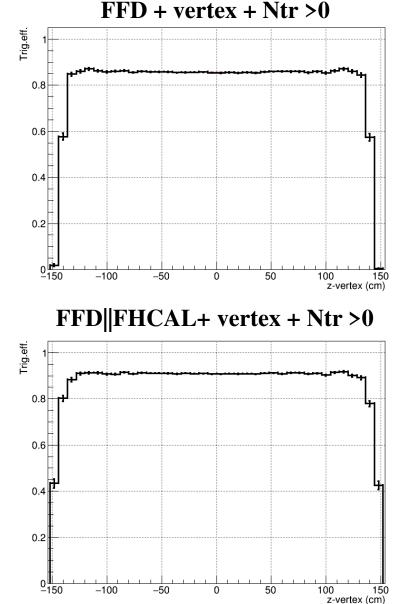
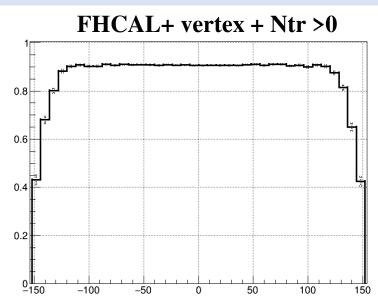
Centrality questions & answers - III

V. Riabov

Small bug in the Glauber fit machinery

- Fitter.cpp
- Two histograms are compared to find the best fit:
 - ✓ Data: TH1F *hRefMult = new TH1F("hRefMultSTAR","hRefMultSTAR",2500,0,2500);
 - ✓ Glauber: fGlauberFitHisto = TH1F("glaub", "", fNbins*1.3, 0, 1.3*fMaxValue);

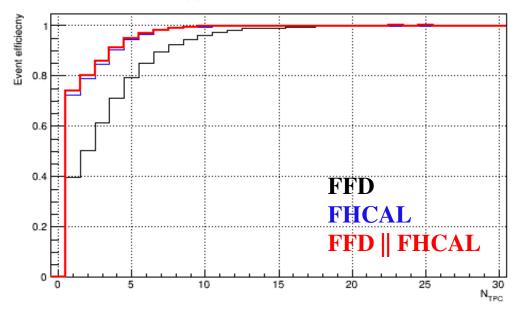

not an integer


- Fit quality is evaluated using histograms with somewhat different binning (bin width)
- The easy fix:
 - ✓ Glauber: fGlauberFitHisto = TH1F("glaub", "", fNbins*1.3, 0, int(1.3*fMaxValue));
- Fit quality improves, modest change of the best fit parameters
- No dramatic changes

Centrality with the TPC

- Event selection:
 - ✓ FFD || FHCAL trigger (minimal bias)
 - ✓ reconstructed vertex: z-vertex !=0
 - ✓ reconstructed vertex is outside of the FFD: |z-vertex| < 130 cm
 - ✓ number of tracks: N_{TPC} > 0, track selections: nhits > 10; p_T > 0.1 GeV/c; DCA < 2.0 cm; $|\eta|$ < 0.5
- Each of these conditions reduces the fraction of the total cross section
- By how much ???

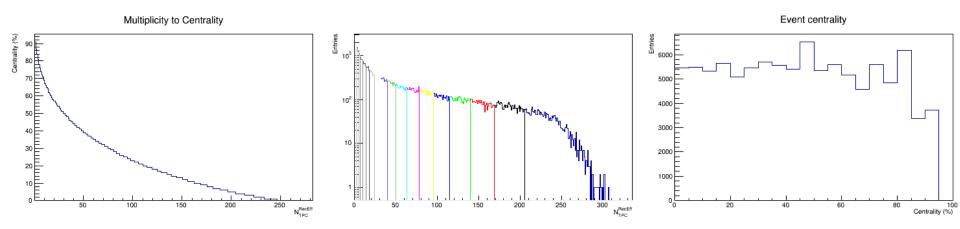
Trigger efficiency: events with $z_{vrtx} != 0$ and $N_{TPC} > 0$



- Request 26 production, 1M DCM-QGSM-SMM
- Trigger efficiency is flat vs. z-vertex
- Trigger efficiency dropped by $\sim 5\%$ due extra req-s
- Proposal is to use FFD||FHCAL trigger selection for the large productions and ignore the fact that T₀ measurements are not available for !FFD events
- The resulting trigger efficiency is ~ 91%

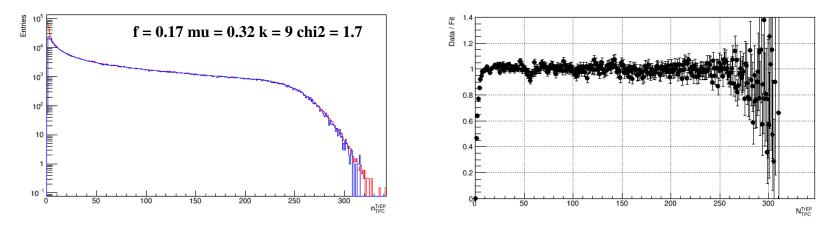
Emulation of trigger

- Trigger simulation is possible only for Request 26 production (DCM-QGSM-SMM)
- Use TPC multiplicity as a proxy for trigger efficiency for all productions


Trigger efficiency vs. multiplicity

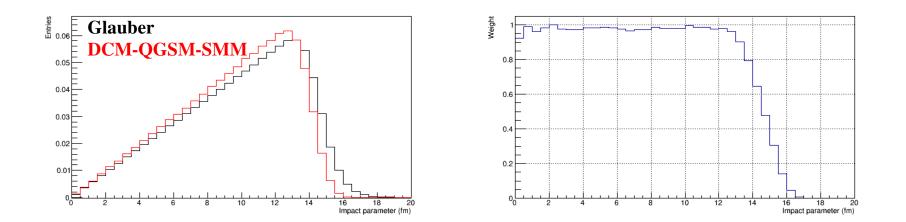
- At $N_{TPC} > 0-10$ the trigger efficiency saturates for FFD||FHCAL option
- Evaluated trigger efficiency is applicable only for default track/event selection cuts:

TrigEff[0] = 0;	TrigEff[5] = 0.949969;	TrigEff[10] = 0.99635;	TrigEff[15] = 0.998933;
TrigEff[1] = 0.739448;	TrigEff[6] = 0.967788;	TrigEff[11] = 0.997572;	TrigEff[16] = 0.998358;
TrigEff[2] = 0.802705;	TrigEff[7] = 0.982232;	TrigEff[12] = 0.998404;	TrigEff[17] = 0.999083;
TrigEff[3] = 0.85774;	TrigEff[8] = 0.990496;	TrigEff[13] = 0.99816;	TrigEff[18] = 0.998685;
TrigEff[4] = 0.910615;	TrigEff[9] = 0.994225;	TrigEff[14] = 0.99899;	TrigEff[19] = 0.998247;

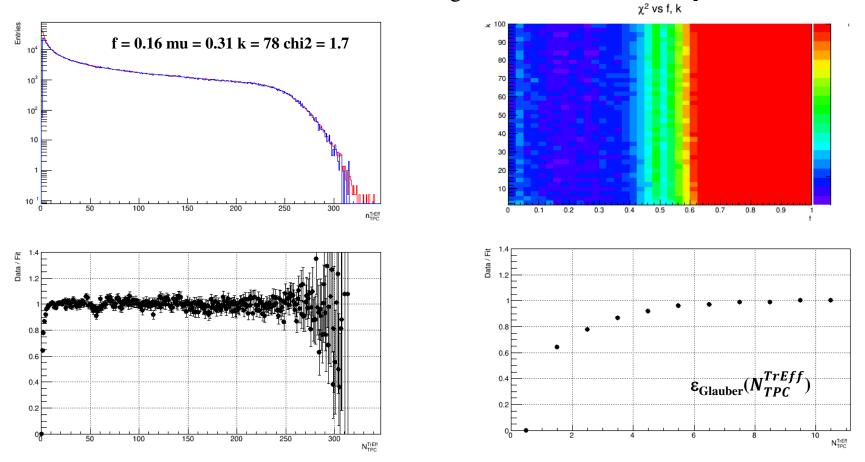

Centrality by TPC multiplicity, DCM-QGSM-SMM

- Only for good events:
 - ✓ reconstructed vertex: z-vertex !=0
 - ✓ reconstructed vertex is outside of the FFD: |z-vertex| < 130 cm
 - ✓ number of tracks: N_{TPC} > 0, track selections: nhits > 10; p_T > 0.1 GeV/c; DCA < 2.0 cm; $|\eta|$ < 0.5
 - $\checkmark \quad \text{Rndm}() > \text{TrigEff}[N_{\text{TPC}}]$
- Resulting multiplicity distribution samples ~91% of the total cross section
- Event multiplicity is calculated using weight for each track ~ $1/\text{RecEff}(z\text{-vertex}, \eta)$
- Centrality is defined as percentile of the total multiplicity with maximum of 91%

Glauber fit to N_{TPC}^{TrEff} distribution, DCM-QGSM-SMM

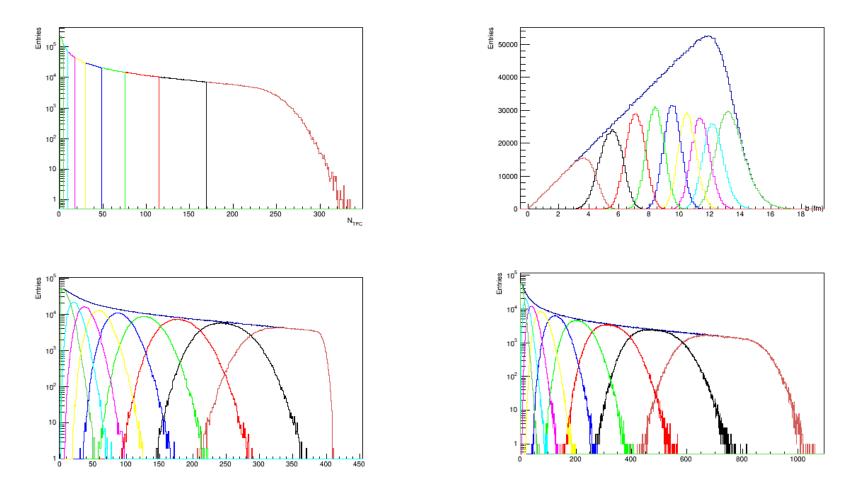

- Only for good events, isEventOk:
 - ✓ reconstructed vertex: z-vertex !=0
 - ✓ reconstructed vertex is outside of the FFD: |z-vertex| < 130 cm
 - ✓ number of tracks: N_{TPC} > 0, track selections: nhits > 10; p_T > 0.1 GeV/c; DCA < 2.0 cm; $|\eta|$ < 0.5
 - $\checkmark \quad \text{Rndm}() > \text{TrigEff}[N_{\text{TPC}}]$
- Event multiplicity is calculated using weight for each track ~ $1/\text{RecEff}(z-\text{vertex}, \eta)$
- Fit range: 9-308

- Predicted trigger efficiency: Integral(data) / Integral (fit) = 83%
- Close but not quite the simulated $91\% \rightarrow$ why?

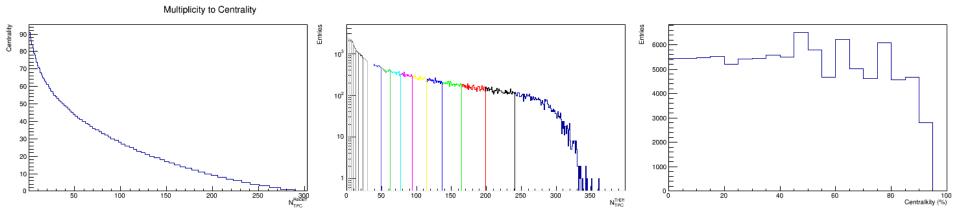

Impact parameter distributions, DCM-QGSM-SMM

- Lets compare impact parameter distributions in Glauber and DCM-QGSM-SMM
- Distributions are different at $b > 12 \text{ fm} \rightarrow \text{different radii, definition of inelastic collisions ???}$
- Glauber can be reweighted to have the same b-distribution as in DCM-QGSM-SMM

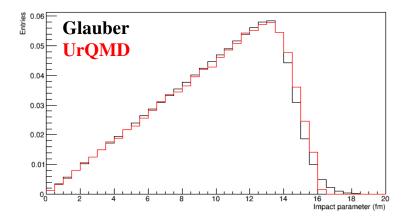
Weighted Glauber fit to N_{TPC}^{TrEff} distribution, DCM-QGSM-SMM

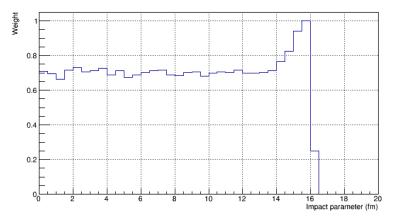

• Same conditions as in slide 7, but with weights for Glauber events by b-value

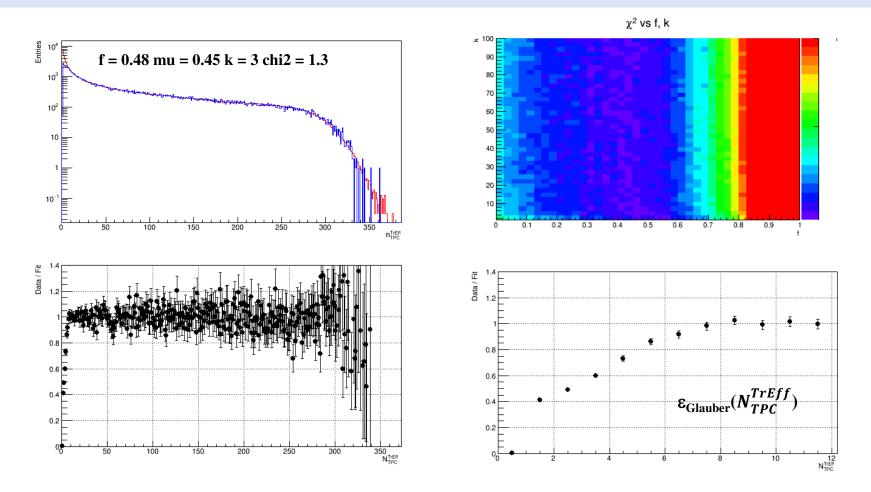
- Predicted trigger efficiency: Integral(data) / Integral (fit) = $90\% \cong \text{simulated } 91\%$
- Turn on curve is very similar to the simulated one (it should not be identical)


Centrality bins in Glauber, DCM-QGSM-SMM

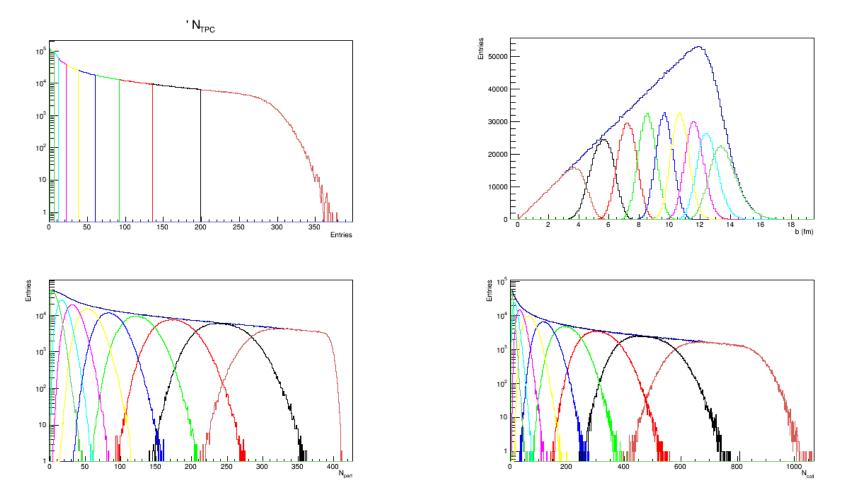
- $P(N_{TPC}^{TrEff}) = \varepsilon_{Glauber}(N_{TPC}^{TrEff}) \cdot \sum_{N_a} NBD(\mu N_a, kN_a) \times MCG(N_a)$
- Fraction of the cross section seen = 90%
- Percentile multiplicity splitting: 0-10%, 10-20%, ... 80-90%


Centrality by TPC multiplicity, UrQMD

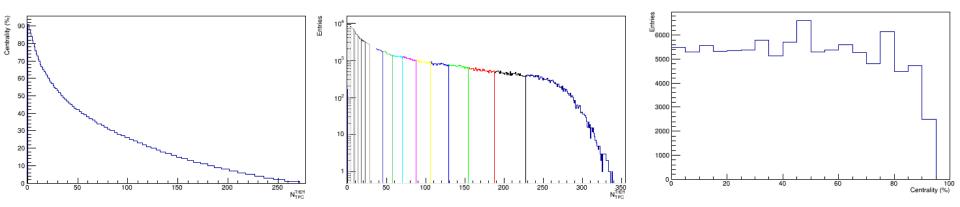

- Only for good events, isEventOk:
 - ✓ event not empty: $N_{generated_{primary}} > 2 * 209$
 - ✓ reconstructed vertex: z-vertex !=0
 - ✓ reconstructed vertex is outside of the FFD: |z-vertex| < 130 cm
 - ✓ number of tracks: N_{TPC} > 0, track selections: nhits > 10; p_T > 0.1 GeV/c; DCA < 2.0 cm; $|\eta|$ < 0.5
 - $\checkmark \quad \text{Rndm}() > \text{TrigEff}[N_{\text{TPC}}]$
- Assume that multiplicity distribution samples 91% of the total cross section (~ 88%)
- Event multiplicity is calculated using weight for each track ~ $1/\text{RecEff}(z\text{-vertex}, \eta)$
- Centrality is defined as percentile of the total multiplicity with maximum of 91%


Impact parameter distributions, UrQMD

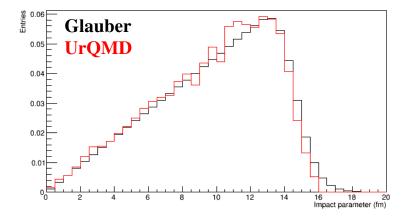
- Lets compare impact parameter distributions in Glauber and UrQMD
- Distributions are different at $b > 12 \text{ fm} \rightarrow \text{different radii, definition of inelastic collisions ???}$
- Glauber can be reweighted to have the same b-distribution as in UrQMD

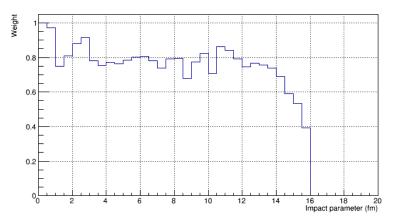

Weighted Glauber fit to N_{TPC}^{TrEff} distribution, UrQMD

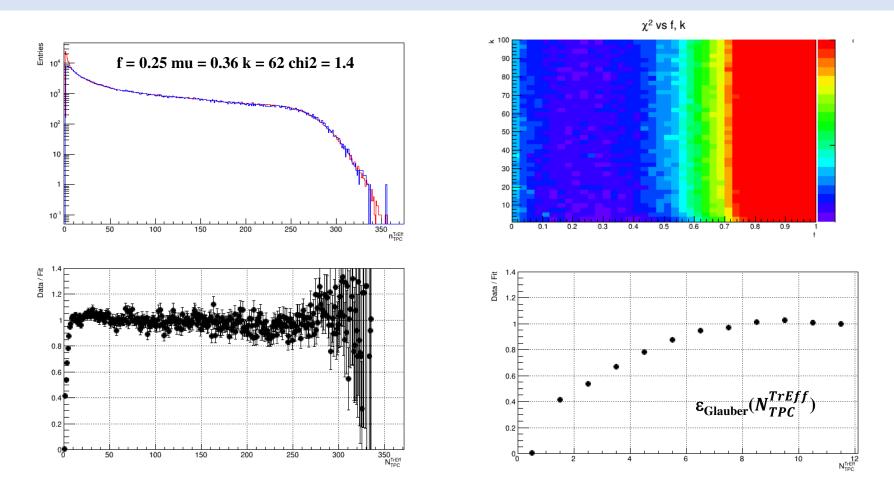
- Predicted trigger efficiency: Integral(data) / Integlal (fit) = $85\% \cong \text{simulated } 91 \ (88)\%$
- Turn on curve is very similar to the simulated one (it should not be identical)


Centrality bins in Glauber, UrQMD

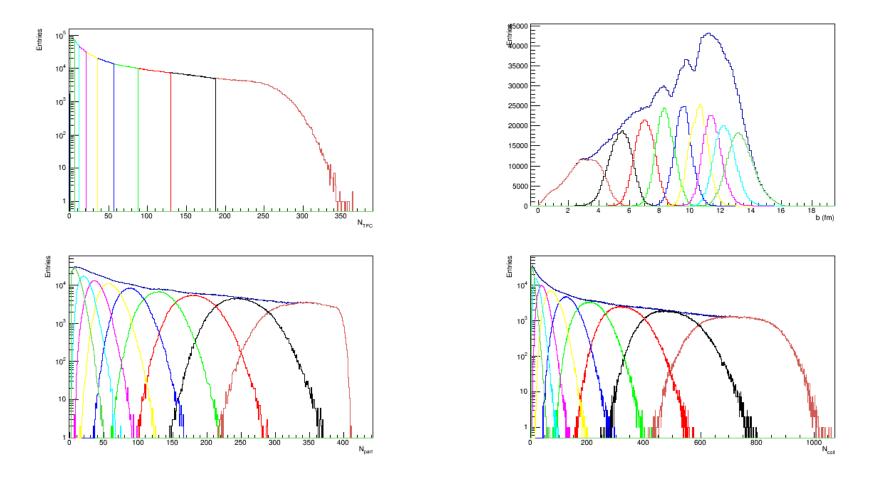
- $P(N_{TPC}^{TrEff}) = \varepsilon_{Glauber}(N_{TPC}^{TrEff}) \cdot \sum_{N_a} NBD(\mu N_a, kN_a) \times MCG(N_a)$
- Fraction of the cross section seen = 90%
- Percentile multiplicity splitting: 0-10%, 10-20%, ... 80-90%

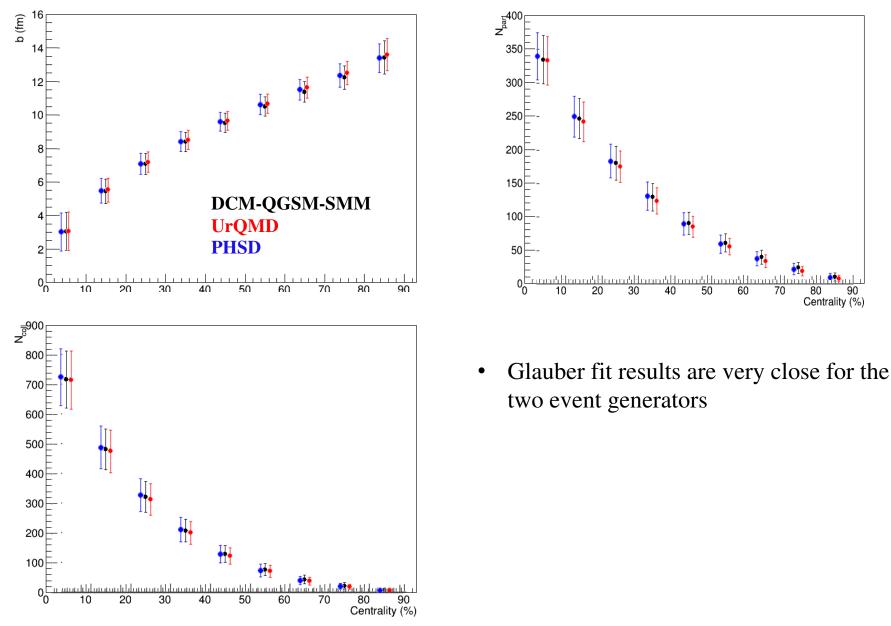

Centrality by TPC multiplicity, PHSD


- Only for good events, isEventOk:
 - ✓ event not empty: $N_{generated_{primary}} > 2 * 209$
 - ✓ reconstructed vertex: z-vertex !=0
 - ✓ reconstructed vertex is outside of the FFD: |z-vertex| < 130 cm
 - ✓ number of tracks: $N_{TPC} > 0$, track selections: nhits > 10; $p_T > 0.1$ GeV/c; DCA < 2.0 cm; $|\eta| < 0.5$
 - $\checkmark \quad \text{Rndm}() > \text{TrigEff}[N_{\text{TPC}}]$
- Assume that multiplicity distribution samples 91% of the total cross section (~ 90%)
- Event multiplicity is calculated using weight for each track ~ $1/\text{RecEff}(z\text{-vertex}, \eta)$
- Centrality is defined as percentile of the total multiplicity with maximum of 91%


Impact parameter distributions, PHSD

- Lets compare impact parameter distributions in Glauber and UrQMD
- Distributions are different at $b > 12 \text{ fm} \rightarrow \text{different radii, definition of inelastic collisions ???}$
- Glauber can be reweighted to have the same b-distribution as in UrQMD


Weighted Glauber fit to N_{TPC}^{TrEff} distribution, PHSD


- Predicted trigger efficiency: Integral(data) / Integlal (fit) = $87\% \cong \text{simulated } 91 \ (90)\%$
- Turn on curve is very similar to the simulated one (it should not be identical)

Centrality bins in Glauber, PHSD

- $P(N_{TPC}^{TrEff}) = \varepsilon_{Glauber}(N_{TPC}^{TrEff}) \cdot \sum_{N_a} NBD(\mu N_a, kN_a) \times MCG(N_a)$
- Fraction of the cross section seen = 90%
- Percentile multiplicity splitting: 0-10%, 10-20%, ... 80-90%

Glauber, model comparison

90

Conclusions

- Centrality procedure with TPC multiplicity has been developed
- Centrality by TPC reduces effective trigger efficiency by $\sim 5\%$
 - ✓ ~ 90% with FFD||FHCAL trigger
 - ✓ ~ 83% with FFD trigger