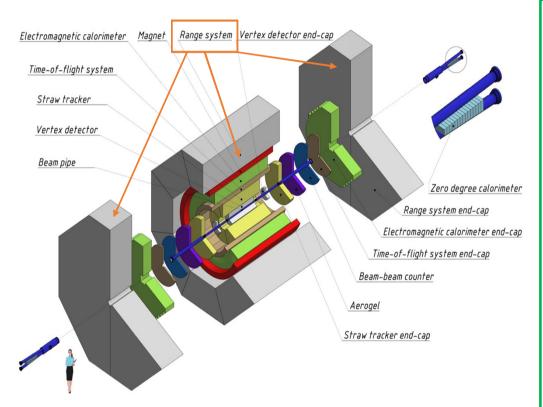
SPD Range (muon) System Digital Electronics Current status


A.Aynikeev, A.Chepurnov, A.Nikolaev, S.Sorokin, MSU

G.Alexeev, N.Zhuravlev, JINR

On behalf of the Muon System team

SPD Collaboration meeting, Dubna, April 24, 2023

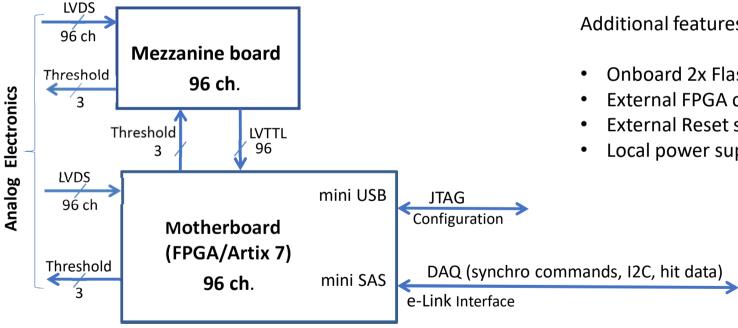
Range System for detecting muons

- ~1000 ton weight;
- ~130k Read Out channels;
- ~ 680 Read Out FEE cards;
- ~ 76 VME 6U crates;
- 16 racks (5 crates/rack);
- Total power consumption ~ 16 kW
- data flow estimation:

(3*10⁶ events/s *200 hit/event * 4 Bytes / hit) **3 GByte/s**

MWDB-192	MFDM-192	FDM -192
(F1 chip -> to FPGA replacement)	(ready module with HotLink interface , installed on prototype in CERN)	(HotLink - > Fast serial Interface)

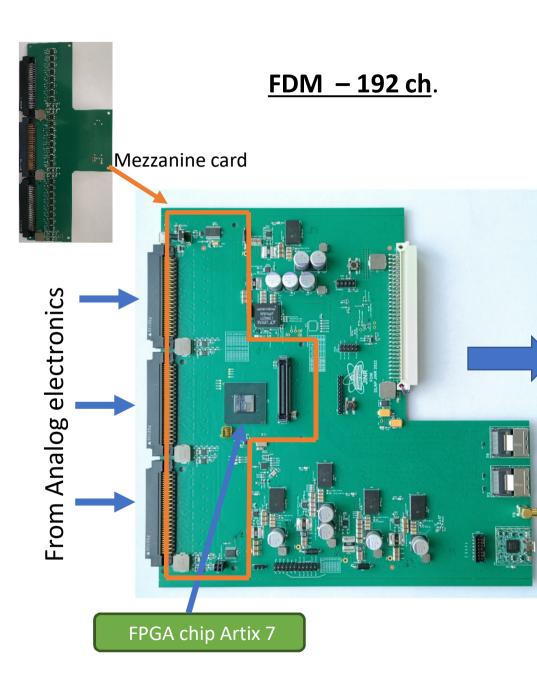
The prototype of the digital electronics for Muon System for SPD NICA


For readout data from the Muon System of the SPD experiment, we are currently developing a digital module FDM-192 based on the FPGA chip with the following technical parameters:

- mechanics VME 6U 2M
- triggerless mode
- FPGA chip Xilinx Artix7-200T
- the number registered channels 192
- signals level from analog electronics LVDS
- threshold range for input signals $-0 \div +3V$
- Global Clock 125 MHz
- discreteness of digitization the time arrival of the hit signal 4 ns
- data interface e-Link (LVDS)
- power consumption per unit ~24W

By now, the module hardware has been developed and manufactured, the firmware is being developed.

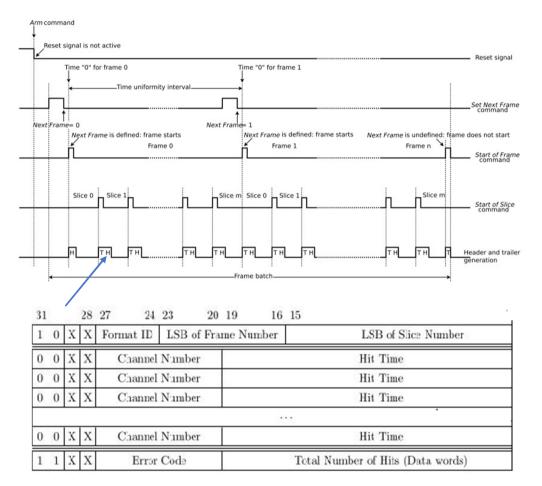
FDM-192 UNIT STRUCTURE


Consists of 2 boards:

- Use FPGA as a time digitizer; ٠
- 4ns time difference between "hit"; ٠
- Fast Serial Interface (FSI) connection with DAQ ٠ through L1 concentrator (e-Link like);

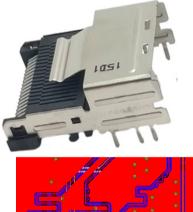
Additional features:

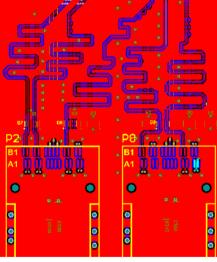
- Onboard 2x Flash Configuration Memory;
- External FPGA configuration loading using FSI;
- External Reset signal;
- Local power supply status self check.


Modified VME CAEN crate 6U (without bottom part of backplane)

9 x FEE read out FDM to one L1 concentrator

Display Port - > SAS connector

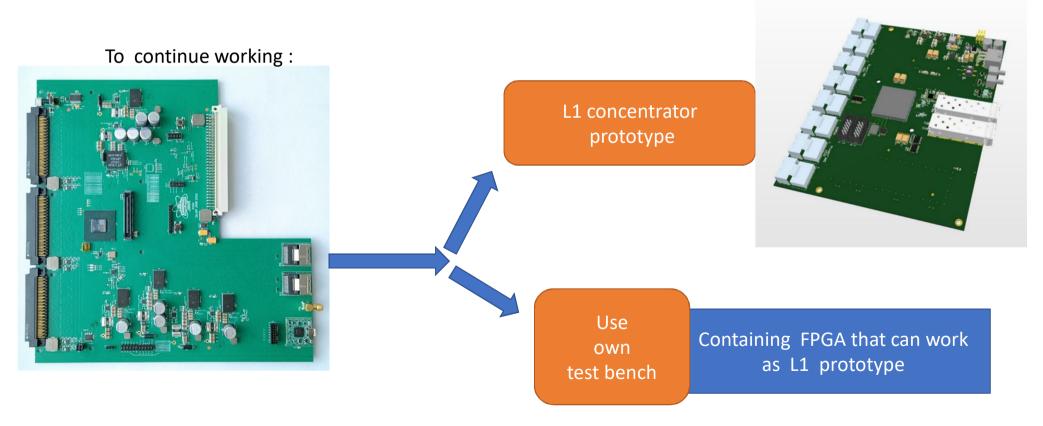

FDM-192 FSI structure



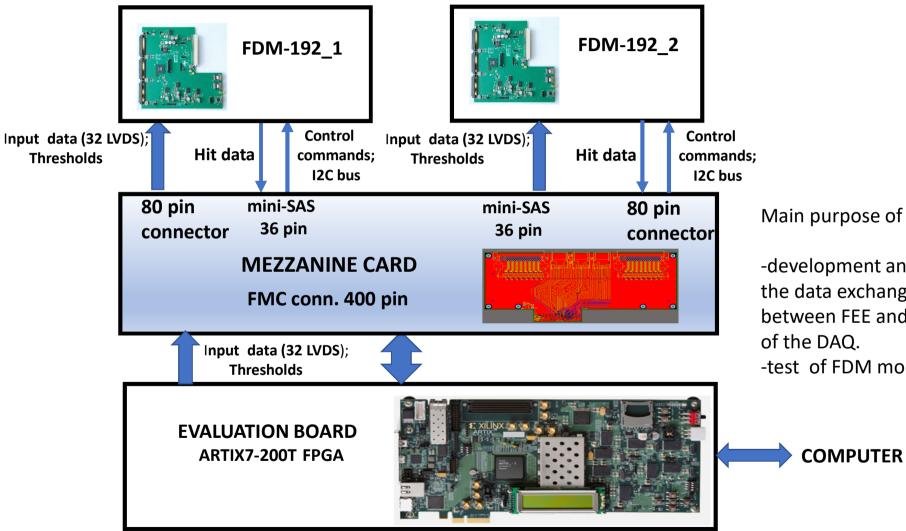
Data Format

FrontEn	d DisplayPort Conn	ector		
Signal Type	Pin Name	Pin		
GND	GND	2		
Out	ML_Lane 0 (p)	1	Data a link	
Out	ML_Lane 0 (n)	3	Data e-link	
GND	GND	5		
In	ML_Lane 1 (p)	4	Ctart of clica	
In	ML_Lane 1 (n)	6	Start of slice	
GND	GND	8		
In	ML_Lane 2 (p)	7	Start of frame	
In	ML_Lane 2 (n)	9	Start of frame	
GND	GND	19		
In	Hot Plug Detect	18	Reset	
IO	CONFIGI	13	I2C SDA	
In	CONFIG2	14	IZC SCL	
GND	GND	11		
In	ML_Lane 3 (p)	10	Cat Nast France	
In	ML_Lane 3 (n)	12	Set Next Frame	
GND	GND	16		
In	AUX_CH (p)	15	Global clock	
In	AUX_CH (n)	17		
	DP_PWR	20	spare signal	

- LVDS type differential line
- Up to 1,25 Gb/s data flow
- Equal length for each line



2 types of interface


- Using MGT transivers
- Using SerDes blocks

To Do List:

- Establish physical connection between FEE (FDM-192) and L1 concentrator;
- Determine what interface to use: MGT or SerDes;
- Configure protocol algorithm in FPGA from both FEE and L1 sides.

Test Bench structure for FDM-192

Main purpose of the stand:

-development and debugging of the data exchange protocol between FEE and L1 concentrator -test of FDM modules.

Thank you for attention!