J/ψ production and spin effects in collisions of unpolarized protons

V. Saleev^{1,2}

 1 Samara National Research University 2 Joint Institute for Nuclear Research

27 April 2023 JINR, Dubna

In collaboration with: A. Anufriev¹,A. Alimov¹,A. Chernyshev¹, A. Karpishkov^{1,2},K. Shilyaev¹

Outline

- Introduction
- Pactorization approaches
- Models for heavy quark hadronization
- 0 Prompt J/ψ production in the NRQCD and ICEM
- **(9)** Polarized J/ψ production
- **(**) $J/\psi + \gamma$ as a clean test of TMD gluon PDFs
- Conclusions

Introduction

SPD NICA is the project to study of spin physics in collisions of polarized protons

A_N and A_{LL} in the J/ψ production as tool

- A.Karpishkov, M.Nefedov and V.Saleev, Estimates for the single-spin asymmetries in the $pp^{\uparrow} \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA, Phys. Rev. D104(2021) no.1, 016008
- Double longitudinal spin asymmetries A_{LL} in J/ψ production, see talk by Igor Denisenko and Anton Karpishkov.

Spin effects can be studied in collisions of unpolarized protons

- Production of the polarized J/ψ mesons
- Production of the different charmonium states $\eta_c, J/\psi, \chi_{cJ}$
- In the TMD factorization, $f_1^g(x, q_T, \mu)$ unpolarized gluon distribution and $h_1^{\perp g}(x, q_T, \mu)$ linearly polarized gluon distribution (Boer-Mulders function)

Collinear parton model (CPM)

• $q_{1,2T} \simeq 0$ and $p_T \ge \mu_F \sim m_{J/\psi}$

$$\begin{split} \sigma(pp \to J/\psi X) &= \int dx_1 \int dx_2 f_g(x_1, \mu_F) f_g(x_2, \mu_F) \hat{\sigma}(g + g \to J/\psi + X) + \\ &+ \mathcal{O}(\Lambda^2_{QCD}/\mu_F^2) \end{split}$$

 $\bullet\,$ There are calculations in LO, NLO, NNLO, ... in the strong constant α_S

TMD PM by Collins, Soper, Stermann

•
$$q_{1,2T} \sim p_T$$
 and $\Lambda_{QCD} \sim p_T \ll \mu_F$

$$\sigma^{TMD}(pp \to \eta_c X) = \int dx_1 d^2 q_{1T} \int dx_2 d^2 q_{2T} F_g(x_1, q_{1T}, \mu_F, \mu_Y) \times F_g(x_2, q_{2T}, \mu_F, \mu_Y) \hat{\sigma}(g + g \to \eta_c + X) + \mathcal{O}(\langle q_T^2 \rangle / \mu_F^2) +$$

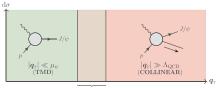
$$\begin{array}{ll} \displaystyle \frac{d\sigma^{TMD}(p+p \to \eta_c X)}{dp_T dy} & = & \sigma_0(s, M_{\eta_c}, \mu) \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i \mathbf{b} \cdot \mathbf{q}_T} \times \\ & \times & \tilde{F}_{g/P_1}(x_1, \mathbf{b}, \mu, \zeta_1) \tilde{F}_{g/P_2}(x_2, \mathbf{b}, \mu, \zeta_2) + \\ & + & Y(M, y, \mathbf{p}_T) + \text{ suppressed corrections} \end{array}$$

where $\tilde{F}_{g/P}(x,\mathbf{b},\mu,\zeta)$ is universal TMD PDFs with evolution.

$$\tilde{F}_{g/P}(x, \mathbf{b}, \mu, \zeta) \leftrightarrows F_{g/P}(x, \mathbf{k}_T, \mu, \zeta)$$

Evolution in TMD PM

$$\begin{split} &\frac{\partial \ln \tilde{F}(x,b,\mu,\zeta)}{\partial \sqrt{\zeta}} = \tilde{K}(b,\mu) \\ &\frac{d\tilde{K}}{d \ln \mu} = -\gamma_K \left(\alpha_S(\mu) \right) \\ &\frac{d \ln \tilde{F}(x,b,\mu,\zeta)}{d \ln \mu} = \gamma_F \left(\alpha_S\left(\mu\right), \frac{\zeta^2}{\mu^2} \right) \end{split}$$


Gluon TMD PDF is unknown

- A. Vladimirov: fit of quark TMD PDFs in DY, $p_T \leq 0.2 \times Q$
- In the conventional TMD PM, the final state should be colorless: $q + \bar{q} \rightarrow \gamma^*(Z), q + \bar{q}' \rightarrow W$ or $g + g \rightarrow H$.
- In case of charmonium production, $g + g \to \eta_c(\chi_{c0,c2})$, if CSM production mechanism is realized
- M. G. Echevarria, Proper TMD factorization for quarkonia production: $pp \rightarrow \eta_{c,b}$ as a study case // JHEP **10**, 144 (2019) – **PDF+Shape function**

Generalized parton model

• $q_{1,2T} \sim p_T$ and $p_T \sim \mu_F$

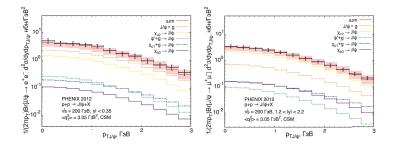
$$\begin{split} \sigma(pp \rightarrow J/\psi X) &= \int dx_1 d^2 q_{1T} \int dx_2 d^2 q_{2T} F_g(x_1, q_{1T}, \mu_F) \times \\ &\times F_g(x_2, q_{2T}, \mu_F) \hat{\sigma}(g + g \rightarrow J/\psi + X) \\ F_g(x, q_T, \mu_F) &= f_g(x, \mu_F) \times \exp(-q_T^2/ < q_T^2 >)/(\pi < q_T^2 >) \\ &< q_T^2 > \sim 1 \text{ GeV}^2 >> \Lambda_{QCD}^2 \end{split}$$

 $\Lambda_{\rm QCD} \ll |\boldsymbol{q}_{\scriptscriptstyle T}| \ll \mu_{\scriptscriptstyle H}$

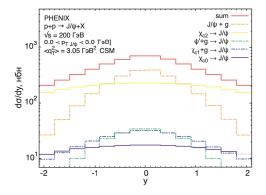
Hadronization mechanisms: CSM, NRQCD and CEM

J/ψ production

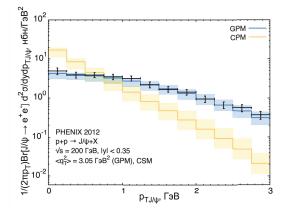
- Baier, Ruckl, Berger, Jones [1983] Color Singlet Model (CSM): $g + g \rightarrow c \bar{c} [{}^{3}S_{1}^{(1)}] + g$ and $g + g \rightarrow c \bar{c} [{}^{1}S_{0}^{(1)}]$, LDME $< \mathcal{H} [{}^{1,3}S_{0,1}^{(1)}] > \sim |\Psi_{\mathcal{H}}(0)|^{2}$.
- Bodwin, Braaten, and Lepage [1995] NRQCD: $g + g \rightarrow c\bar{c}[{}^{3}S_{1}^{(1)}], [{}^{1}S_{0}^{(8)}], [{}^{3}P_{J}^{(8)}]$ as perturbative series in $v^{0}, v^{2}, ...$
- Fritzsch, Halzen [1977] Color Evaporation Model (CEM):

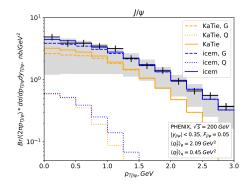

$$\sigma(J/\psi) = F_{J/\psi} \int_{2m_c}^{2m_D} \frac{d\sigma(gg \to c\bar{c})}{dM_{c\bar{c}}} dM_{c\bar{c}}$$

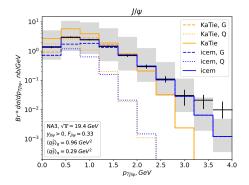
Ma and Vogt [2016] – Improved Color Evaporation Model (ICEM)


$$\sigma(J/\psi) = F_{J/\psi} \int_{M_{J/\psi}}^{2m_D} \frac{d\sigma(gg \to c\bar{c})}{dM_{c\bar{c}}} dM_{c\bar{c}}$$

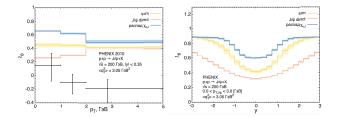
$$p_{TJ/\psi} = \frac{M_{J/\psi}}{M_{c\bar{c}}} p_{Tc\bar{c}}$$


$\rm GPM$ + NRQCD, test of PHENIX and NA3 data


$\rm GPM$ + NRQCD, test of PHENIX and NA3 data

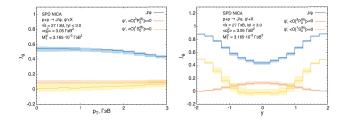

GPM versus CPM in the NRQCD

GPM + ICEM, test of the PHENIX and NA3 data


GPM + ICEM, test of the PHENIX and NA3 data

Polarized J/ψ production

Polarized J/ψ production using the NRQCD


$$\lambda_{\theta} = \frac{\sigma_T - 2 \sigma_L}{\sigma_T + 2 \sigma_L} = \frac{\sigma - 3 \sigma_L}{\sigma + \sigma_L}$$

Polarized J/ψ production using the ICEM is in work till now ...

Polarized J/ψ production

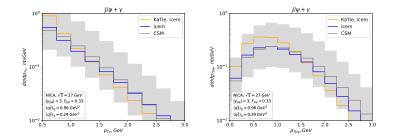
Polarized J/ψ production issing the NRQCD

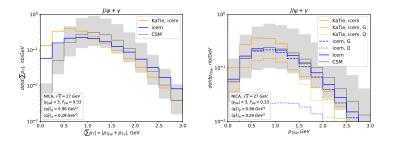
 $J/\psi + \gamma$ in the NRQCD only CS contribution in LO

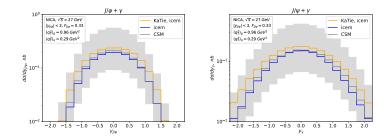
 $J/\psi + \gamma$ pair with the small total momentum originated from TMD PDFs

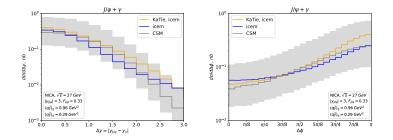
The gluon-TMD correlator

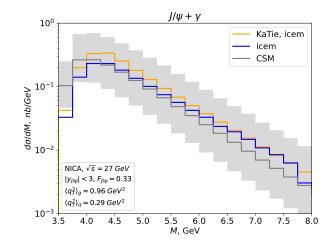
$$E\frac{d\sigma(pp \to J/\psi X)}{d^3p} = \sigma_0(y,s) \left[f_1^g(x_1, q_{1T}) \otimes f_1^g(x_2, q_{2T}) + (1) + w(y, p_T, s) \otimes h_1^{\perp g}(x_1, q_{1T}) \otimes h_1^{\perp g}(x_2, q_{2T}) \right]$$


$$\frac{d\sigma(J/\psi\gamma)}{dQdYd^2p_Td\Omega} = F_1 f_1^g(x_1, q_{T1}) \otimes f_1^g(x_2, q_{T2}) +$$


$$+ F_3 \cos(2\phi) w_3 \otimes f_1^g(x_1, q_{T1}) \otimes h_1^{\perp g}(x_2, q_{T2}) +$$


$$+ F_3 \cos(2\phi) w_3 \otimes f_1^g(x_2, q_{T2}) \otimes h_1^{\perp g}(x_1, q_{T1}) +$$


$$+ F_4 \cos(4\phi) w_4 \otimes h_1^{\perp g}(x_2, q_{T2}) \otimes h_1^{\perp g}(x_1, q_{T1})$$
(2)


 $d\Omega = d\cos\theta d\phi$ - Collins-Soper angles.

- There are not experimental data for J/ψ + γ production and the measurement the cross section at the NICA may be very interesting
- The analysis of the ratio "signal/bachground" will be presented in the talk by Lev Alimov today.
- It is interesting to estimate the contribution of the gluon Boer-Mulders TMD PDF in polarized J/ψ production

 J/ψ production and spin effects in collisions of unpolarized protons

Thank you for your attention!