Adsorption behavior of superheavy 7p elements and their compounds on gold surface: periodic DFT calculations

> Anton Ryzhkov, Vladimir Shabaev St. Petersburg State University

V. Pershina, GSI, Darmstadt Miroslav Ilias, Matej Bel University, Slovakia

with the support of JINR, Dubna

Superheavy Elements to be Chemically Studied

1																	18
1 H	2											13	14	15	16	17	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 br	36 kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La →	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 11	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac ‡	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
(119) (120) (121)																	
Lanthanides →		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
Actinides 📫			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
Super	actinio	tes 茸	(122	- 155)												

Chemical separation is relatively slow technique – now SHE isotopes with $t_{1/2}$ > 1 s can be studied

V. Pershina, Dubna Meeting 2021

Gas-Phase Chromatography Experiments on SHEs at JINR, Dubna

Chromatography column

V. Pershina, Dubna Meeting 2021

Method for Periodic Calculations

– SCM BAND

- 2 component: SR and SO relativity
- all electron
- STO basis sets till Z=120
- geometry optimization (up to 300 iterations)
- full relaxation
- various E^{xc} including dispersion-corrected
- checking all adsorption positions (hollow-2 is most stable)
 - (for molecules: Force Field method *M. Ilias*)
- commercial & host-locked

Modeling Gold Surface

- Modeling gold surfaces
 - calculating structure of gold bulk
 - Au(111) geometrical cut plane most stable
 - constructing the (4 x 4) supercell to avoid interaction of ad-atoms (for single species of SHEs)

"hollow-2" is most stable position

Periodic Calculations of E_{ads} (Pb/FI) on Au(111)

Au(111) s-cell

Atom/Molecule

M/MO/Au-s-cell

V. Pershina, Dubna Meeting 2021

Results for $E_{ads}(M)$ for Hg/Cn - Rn/Og on Au(111) Surface

• Eads: SR and SO in comparison with experimental ones

				12					
	SCM	BAND	Evn		SCM	Exp.			
	(revPBI	E-D3BJ)	Exp.		(revPB				
Element	SR	SO		Element	SR	SO			
	6 ^{ti}	¹ row		7 th row					
Hg	73	78ª	98±3 ^b	Cn	57	68	52 ⁺⁴ -3 f		
Tl	359	254ª	270±10°	Nh	351 ^a	162ª			
Pb	367	268ª	234 ^d	Fl	355	87	34 ⁺⁵⁴ -11 ^h		
Bi	317	280ª	268/273±7e				>48 ⁱ		
Ро	332	260	250±7 ^e	Mc	312ª	205ª			
At	232	184	153±5 ^g	Lv	323	240			
Rn	42	45	20±1 ^f	Ts	231	203			
		1		Og	50	78			

^aPershina, V. et. al. // *Inorg. Chem.* 60, 9796-9804 (2021); ^bLens, L. et. al. // Radiochim. Acta 2018, 106, 949-962; ^cSerov, A. R. et. al. // Radiochim. Acta 2013, 101, 421-425; ^dHaenssler, F. et. al. // PSI Annual Report 2005 (2006), p 3; ^eMaugeri, E. A. et. al. // Radiochim. Acta 2016, 104, 757-767; ^gSerov, A. et. al. // *Radiochim. Acta*, 99, 693-599 (2011).

^fEichler, R. et. al. // Nature 2007, 447, 72-75; ^hEichler, R. et. al. // Radiochim. Acta 2010, 98, 133-139; ⁱYakushev, A. et. al. // Inorg. Chem. 2014, 53, 1624-1629.

Experimental value of At

Theoretical results:

 $E_{ads}(At) = 184 \text{ kJ/mol}$ $E_{ads}(AtOH) = 185 \text{ kJ/mol}$

 $E_{ads}(Ts) = 203 \text{ kJ/mol}$ $E_{ads}(TsOH) = 193 \text{ kJ/mol}$

Serov, A. et. al. // Radiochim. Acta, 99, 693-599 (2011).

Results for $E_{ads}(M)$ for Hg/Cn - Rn/Og

Cn/Hg Nh/Tl Fl/Pb Mc/Bi Lv/Po Ts/At Og/Rn

Formation of Compounds of SHEs

- Formation of MH and M(OH) in the atmosphere of $\rm O_2,\, H_2O$ and $\rm H_2$
 - Group 17:
 - Ts + O_2 = TsOO Ts + O = TsO TsO + H_2 = Ts + H_2O TsOO + H_2 = TsOH + OH
 - $TsOO + H_2 = TsO + H_2O$
 - Group 18:
 - $Og + O_2 = OgOO$ $OgOO + H_2 = OgO + H_2O$

- Er = -0.302 eV
- Er = -2.748 eV
- Er = -2.691 eV
- Er = -0.832 eV
- Er = -1.949 eV

Er = -0.0034 eV Er = -0.454 eV

Geometrical Configurations of MH/Au(111) (M = Mc/Bi, Lv/Po, Ts/At, Og/Rn)

Adsorption of the MH molecules on the Au(111) surfaces takes place via interaction of the both M and H with the surface Au atoms

Adsorption of MH (M = Mc/Bi, Lv/Po, Ts/At, Og/Rn) on Au(111)

OgH should adsorb on gold much more strongly than RnH and Og: it should be possible to distinguish experimentally between Og and OgH by adsorption on gold

Geometrical Configurations of MOH (M = At/Ts and Rn/Og) on Au(111)

Group 17

AtOH and TsOH

<u>Group 18</u>

RnOH and OgOH

Adsorption of MOH (M = Ts/At, Og/Rn) on Au(111)

Og/Rn

Ts/At

Adsorption of the hydroxides is too high to observe distribution of events at the room temperature or lower ones

SR level

SO level

Og

Conclusions for Experiments with Gold Surface of Detectors

Acknowledgment of the Laboratory of Information Technologies of JINR