Совещание «СВЕРХТЯЖЕЛЫЕ АТОМЫ» 19 – 20 Декабря 2022, г. Дубна

ХОД ЭКСПЕРИМЕНТА ПО ИССЛЕДОВАНИЮ ХИМИЧЕСКИХ СВОЙСТВ 114 И 112 ЭЛЕМЕНТОВ

Николай Аксенов

nikolay.aksenov@jinr.ru

Лаборатория ядерных реакций им. Г.Н. Флерова

Совещание по физике тяжелых ионов 3 – 9 Июля 2022, г. Санкт-Петербург

Грант МОН «Сверхтяжелые ядра и атомы: пределы масс ядер и границы Периодической Таблицы Д.И. Менделеева»

II. Сверхтяжелые атомы

 Экспериментальное определение химических свойств 112 и 114 элементов в сравнении с их легкими гомологами соответственно, ртутью и свинцом на Фабрике сверхтяжелых элементов ОИЯИ

Н.В. Аксенов

Эксперименты по газоадсорбционной хроматографии элементов 112 и 114

- Актуальность
- Эксперименты в ЛЯР и GSI
- Анализ результатов

А.В. Еремин

Подготовка первого эксперимента по химии 114 и 112 элементов на Фабрике СТЭ

Совещание «СВЕРХТЯЖЕЛЫЕ АТОМЫ»

19 – 20 Декабря 2022, г. Дубна

ХОД ЭКСПЕРИМЕНТА ПО ИССЛЕДОВАНИЮ ХИМИЧЕСКИХ СВОЙСТВ 114 И 112 ЭЛЕМЕНТОВ

- 1. Свойства Сп и Fl
 - і. Методы исследования
 - іі. Теоретические расчеты
- 2. Подготовка к первому эксперименту на Фабрике СТЭ
 - і. Новые результаты на сепараторе ГНС-2
 - іі. Мишень
 - ііі. Сепаратор GRAND
 - iv. Криогенный детектор
 - v. Тесты on-line: газовый транспорт и пробеги ядер отдачи
- 3. Ход эксперимента и первые результаты

ЭКСПЕРИМЕНТЫ

Газоадсорбционная хроматография на золоте:

- 2000-2003 ЛЯР и PSI/GSI Cn
- 2006-2013 PSI/ЛЯР Cn, Fl
- 2009 TASCA GSI Cn, Fl
- 2014-2018 TASCA GSI FI публикация август 2022

Radiochim. Acta $\mathbf{98},$ 133–139 (2010) / \mathbf{DOI} 10.1524/ract.2010.1705 © by Oldenbourg Wissenschaftsverlag, München

Indication for a volatile element 114

By R. Eichler^{1,2,*}, N. V. Aksenov³, Yu. V. Albin³, A. V. Belozerov³, G. A. Bozhikov³, V. I. Chepigin³, S. N. Dmitriev³, R. Dressler¹, H. W. Gäggeler^{1,2}, V. A. Gorshkov³, R. A. Henderson⁴, A. M. Johnsen⁴, J. M. Kenneally⁴, V. Ya. Lebedev³, O. N. Malyshev³, K. J. Moody⁴, Yu. Ts. Oganessian³, O. V. Petrushkin³, D. Piguet¹, A. G. Popeko³, P. Rasmussen¹, A. Serov^{1,2}, D. A. Shaughnessy⁴, S. V. Shishkin³, A. V. Shutov³, M. A. Stoyer⁴, N. J. Stoyer⁴, A. I. Svirikhin³, E. E. Tereshatov³, G. K. Vostokin³, M. Wegrzecki⁵, P. A. Wilk⁴, D. Wittwer³ and A. V. Yeremin³

- высокая летучесть и инертность в атомарном состоянии
- физисорбция на золоте
- благородный металл или газ

Frontiers | Frontiers in Chemistry

TYPE Original Research PUBLISHED 25 August 2022 DOI 10.3389/fchem.2022.976635

Check for updates

OPEN ACCESS

EDITED BY Wanglei Kong, Nankai University, China ERVEWED BY Andreas Türler, University of Bern, Switzerland Jun Zhang, Pacific Northwest National Laboratory (DOE), United States

A. Yakushev, a.yakushev@gsi.de

¹PRESENT ADDRESSES L. Lens, Hochschule Mannheim, Mannheim, Germany STFC Daresbury Laboratory, Daresbury, Warnigton, United Kingdom A. Toyoshima, Osaka University, Osaka, Japan A. Di Nited Federico II' di Napoli, Naples, Italy Università Federico II' di Napoli, Naples, Italy U, Forsberg, Sudavik Nuclear, Tystberga, Sweden

On the adsorption and reactivity of element 114, flerovium

A. Yakushev^{1,2*}, L. Lens^{1,3†}, Ch. E. Düllmann^{1,2,3},
J. Khuyagbaatar^{1,2}, E. Jäger¹, J. Krier¹, J. Runke^{1,3}, H. M. Albers¹,
M. Asai⁴, M. Block^{1,2,3}, J. Despotopulos⁵, A. Di Nitto^{1,3†},
K. Eberhardt³, U. Forsberg^{6†}, P. Golubev⁶, M. Götz^{1,2,3},
S. Götz^{1,2,3}, H. Haba⁷, L. Harkness-Brennan⁸, R.-D. Herzberg⁸,
F. P. Heßberger^{1,2}, D. Hinde⁹, A. Hübner¹, D. Judson⁸,
B. Kindler¹, Y. Komori⁷, J. Konk¹⁰, J.V. Kratz³, N. Kurz¹,
M. Laatiaoui^{1,2,3}, S. Lahiri¹¹, B. Lommel¹, M. Maiti¹², A. K. Mistry^{1,2},
Ch. Mokry^{2,3}, K. J. Moody⁵, Y. Nagame⁴, J. P. Omtvedt¹³,
P. Papadakis^{8†}, V. Pershina¹, D. Rudolph⁶, L.G. Samiento⁶,
T.K. Sato⁴, M. Schädel¹, P. Scharrer^{1,2,3}, B. Schausten¹,
D. A. Shaughnessy⁵, J. Steiner¹, P. Thörle-Pospiech^{2,3},
A. Toyoshima^{4†}, N. Trautmann³, K. Tsukada⁴, J. Uusitalo¹⁰,
K.-O. Voss¹, A. Ward⁸, M. Wegrzeckl¹⁴, N. Wiehl^{2,3}, E. Williams⁹
and V. Yakusheva^{1,2}

Симуляции по методу Монте-Карло на основе модели мобильной адсорбции (модель Звары) не могут описать экспериментальный результат:

Сценарий 1. Образование двух химических форм

Сценарий 2. Адсорбция на негомогенной поверхности золота

Нужна более высокая статистика: Фабрика СТЭ

<u>ИЮПАК признал точную химическую</u> идентификацию открытием элемента 104 Стратегия:

Сравнить химические свойства(поведение) СТЭ со свойствами его более легких гомологов в группе ПТ используя групповые отличия – летучесть соединений

- Шаг 1: получение СТЭ в ядерной реакции
- Шаг 2: получение летучего соединения СТЭ в химической реакции
- Шаг 3: измерение радиоактивного распада сверхтяжелого атома
- Шаг 4: экстраполяция данных адсорбции на макроскопические величины

Методика успешно применялась во всех последующих исследованиях с элементами 104-108

ГАЗОАДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ

Химия с одним атомом

- высокая скорость разделения
- регистрация SF максимальная чувствительность
- практически бесконечный объем образца
- широкий температурный диапазон
- высокая эффективность разделения

Разделение происходит из-за разницы в летучести и взаимодействии атомов с поверхностью

Адсорбция на металлах: Температура осаждения определяется энтальпией адсорбции, которая коррелирует с энтальпией сублимации

- Летучесть
- Инертное поведение
- Элементарное состояние

Постановка экспериментов требует больших технических, инженерных и интеллектуальных усилий

2. ЭКСПЕРИМЕНТЫ @ЛЯР/ PSI – Cn (2006-2007)

Vol 447 3 May 2007 doi:10.1038/nature05761

$^{48}Ca + ^{242}Pu \rightarrow ^{287}Fl (0,5 c) \rightarrow ^{283}Cn (3,8 c)$

I FTTFRS

nature

Chemical characterization of element 112

R. Eichler^{1,2}, N. V. Aksenov³, A. V. Belozerov³, G. A. Bozhikov³, V. I. Chepigin³, S. N. Dmitriev³, R. Dressler¹, H. W. Gäggeler^{1,2}, V. A. Gorshkov³, F. Haenssler^{1,2}, M. G. Itkis³, A. Laube¹, V. Ya. Lebedev³, O. N. Malyshev³, Yu. Ts. Oganessian³, O. V. Petrushkin³, D. Piguet¹, P. Rasmussen¹, S. V. Shishkin³, A. V. Shutov³, A. I. Svirikhin³, E. E. Tereshatov³, G. K. Vostokin³, M. Wegrzecki⁴ & A. V. Yeremin³

В последующих экспериментах зарегистрировано 13 цепочек распада ²⁸³Cn и ²⁸⁵Cn подтверждающих наблюдаемые свойства

ВЛИЯНИЕ РЭ: ПРЕДСКАЗАНИЕ СВОЙСТВ

1. Экстраполяции термодинамических свойств вниз по группе из экспериментальных данных

Б. Айхлер (1974, ЛЯР) Высокая летучесть элементов 112-118

2. Расчеты электронной структуры:

В. Першина Теоретические исследования хим. свойств СТЭ

А.М. Рыжков Адсорбционные свойства сверхтяжелых элементов и их соединений на поверхности золота

Д.А. Глазов Свойства оксидов, гидридов и гидроксидов СТЭ, их адсорбция на золоте и кварце

ГАЗОАДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ

Специфика изучения Cn и Fl

Химия атомов отдачи – впервые без носителя

Низкая статистика

Свойства поверхности

Реакции в газе и на поверхности

Адсорбция на металлах: Температура осаждения определяется энтальпией адсорбции, которая коррелирует с энтальпией сублимации

- Летучесть
- Инертное поведение
- Элементарное состояние

Текущие теоретические задачи

А. Астахов, Г. Божиков, Б.Л. Жуйков, Н.В. Аксенов

- 1. Выход за рамки модели мобильной адсорбции:
 - Разработка модельных молекулярно-динамических потенциалов для изучения адсорбции атомов СТЭ на золоте;
 - Совместное применение методов квантовой химии и молекулярной динамики для параметризации моделей адсорбции по методу Монте-Карло
 - Оценка газокинетических и адсорбционных свойств атомов и молекул СТЭ:
 - кинетический диаметр атома/молекулы;
 - частота нормальных колебаний адсорбированного атома/молекулы на поверхности адсорбента;
 - вероятность дрейфа атома/молекулы по поверхности адсорбента + длина скачков между адсорбированными состояниями;

2. Построение корреляций между энергией связи адсорбата с адсорбентом и типом их химического связывания.

Подготовка к первому химическому эксперименту на Фабрике СТЭ

Investigation of ⁴⁸Ca-induced reactions with ²⁴²Pu and ²³⁸U targets at the JINR Superheavy Element Factory

Yu. Ts. Oganessian,¹ V. K. Utyonkov ●,¹ D. Ibadullayev,^{1,2} F. Sh. Abdullin,¹ S. N. Dmitriev,¹ M. G. Itkis,¹ A. V. Karpov,¹ N. D. Kovrizhnykh,¹ D. A. Kuznetsov,¹ O. V. Petrushkin,¹ A. V. Podshibiakin,¹ A. N. Polyakov,¹ A. G. Popeko,¹ R. N. Sagaidak,¹ L. Schlattauer,^{1,3} V. D. Shubin,¹ M. V. Shumeiko,¹ D. I. Solovyev,¹ Yu. S. Tsyganov,¹ A. A. Voinov,¹ V. G. Subbotin,¹ A. Yu. Bodrov,¹ A. V. Sabel'nikov,¹ A. Lindner,^{1,3} K. P. Rykaczewski,⁴ T. T. King,⁴ J. B. Roberto,⁴ N. T. Brewer,^{4,*} R. K. Grzywacz,^{4,5} Z. G. Gan,⁶ Z. Y. Zhang,⁶ M. H. Huang,⁶ and H. B. Yang^{1,6}

TABLE I. The 242 Pu and 238 U target thicknesses, laboratory-frame energies of 48 Ca in the middle of the target layer, resulting excitation energy intervals (with use of mass tables [19,20]), total beam doses, the numbers of observed decay chains assigned to 287 Fl (3*n*), 286 Fl (4*n*), and 283 Cn (3*n*) and the cross sections of their production.

Target thickness (mg/cm ²)	$E_{\rm lab}^{\rm a}~({\rm MeV})$	E^* (MeV)	Beam dose $\times 10^{18}$	No. of chains 3n/4n	σ_{3n} (pb)	σ _{4n} (pb)
²⁴² Pu	242.5	37.1-40.7	11.2	65/11	$10.4^{+3.5}_{-2.1}$	$1.8^{+1.0}_{-0.6}$
10 × 0.76, 0.56, 0.35	247.5	41.3-44.8	5.0	4/14	$1.2^{+1.2}_{-0.7}$	$4.8^{+2.1}_{-1.6}$
²³⁸ U	234.4	33.6-37.1	12.1	4/0	$0.5_{-0.3}^{+0.5}$	-
0.67	231.1	30.7-34.4	13.5	12/0	$1.5_{-0.5}^{+0.7}$	-

^aThe beam energy was measured with a time-of-flight system, which has a systematic uncertainty of 1 MeV.

TABLE II. Summary decay properties of isotopes extracted from previous and present studies. The first three columns show nucleus, decay mode and branch, as well as half-life. The next four columns show α -particle energy E_{α} , α -decay energy Q_{α} , and partial half-lives with respect to α decay and SF.

Nucleus	Decay mode, branch (%) ^{a,b}	Half-life ^b	$E_{\alpha} \; ({\rm MeV})^{\rm c}$	$Q_{\alpha} \; ({ m MeV})^{ m c}$	$T_{\alpha}{}^{\mathbf{b}}$	$T_{\rm SF}{}^{\rm b}$
²⁸⁷ Fl	α : > 70	$360^{+45}_{-36} \mathrm{ms}$	10.016(15)	10.157(15)		> 1 s
²⁸⁶ Fl	α : 55 ± 8	$105^{+17}_{-13} \mathrm{ms}$	10.191(10)	10.335(10)	$0.19^{+0.05}_{-0.04}$ s	$0.23^{+0.07}_{-0.04}$ s
²⁸³ Cn	$\alpha: 96^{+3_{\rm d}}_{-6}$	$3.81^{+0.45}_{-0.36}$ s	9.531(15)	9.667(15)	$4.0^{+0.5}_{-0.4}$ s	90^{+160}_{-50} s
²⁸² Cn	SF	$0.83^{+0.18}_{-0.13}$ ms				
²⁷⁹ Ds	SF: 87 ⁺² ₋₅	186^{+21}_{-17} ms	9.686(15)	9.827(15)	1.4 ± 0.4 s	$0.22^{+0.02}_{-0.03}$ s
²⁷⁵ Hs	α : > 89	$0.60^{+0.23}_{-0.13}$ s	9.323(15)	9.461(15)	< 0.9 s	> 4 s
²⁷¹ Sg	$\alpha: 73^{+10}_{-15}$	31^{+13}_{-7} s	8.501(16)	8.629(16)	43^{+21}_{-11} s	$120^{+90}_{-50}\mathrm{s}$
²⁶⁷ Rf	SF	48^{+23}_{-12} min				

^aBranch is given for the most probable decay mode (α or SF). The branching ratio is not listed when only one decay mode was observed. ^bError bars correspond to 68%-confidence level.

^cEnergy uncertainties given in parentheses correspond to the data with the best energy resolution.

^dBranch is determined from the data where ²⁸³Cn was observed as the daughter nucleus after α decay of ²⁸⁷Fl; see the text.

План работ по п. 7 гранта.

Для реализации вышеуказанной задачи будет создана новая установка для изучения химических свойств сверхтяжелых элементов (СТЭ) на пучке ионов Са-48, полученного на циклотроне ДЦ-280. Установка включает газонаполненный сепаратор продуктов ядерных реакций, газовую камеру сбора ядер отдачи, систему быстрого газового транспорта продуктов реакции в детектирующий модуль – крио-детектор. Для проведения этих экспериментов будет изготовлена мишень из обогащенного изотопа Pu-242 и создан специализированный стенд для получения металлического Са-48.

А.В. Еремин / Р. Айхлер / Н.В. Аксенов /

Изготовление радиоактивных мишеней для ДЦ-280 в 2021

А.В. Сабельников, А.Ю. Бодров, Н.В. Аксенов

		Е, МэВ	I, ×10 ¹⁸	Ток, мкА*ч	Даты
²⁴³ Am	AmO ₂ 380 мкг/см ² 1,5 мкм Ті колесо Ø150 6 сегментов	240.9	2.2×10 ¹⁸	1.04 / 1.3	19.01. – 04.02.
²⁴² Pu	PuO ₂ 758 мкг/см ² 1,5 мкм Ті колесо Ø240 12 сегментов	242.5 247.5	11.2 5.0 1.62E+19	1.16 / 3.0 3	18.03. – 07.06. 31.05 - 07.06
²³⁸ U	U ₃ O ₈ +UO ₂ 743 мкг/см ² 1,5 мкм Ті колесо Ø240 12 сегментов	246.0 243.0	12 13 2.55E+19	до 5 6.5	19.09. – 11.10. 11.10. – 27.10.

Устойчивость мишеней: спектрометрия на ГНС-2

Изготовление мишеней для экспериментов на ДЦ-280 в 2022

• Мишень ²⁴²Ри для эксперимента по изучению химии FI/Cn после ГНС-3

PuO ₂	Сроки изготовления	I, ×10 ¹⁸	Ток, мкА*ч	Даты облучения
700 мкг/см² ?				
1,5 мкм Ті	январь-февраль	50 дней	3	апрель - июнь
колесо Ø240				
12 сегментов				

- Запасная мишень
- Стабильные мишени для тестов на ГНС-3

<u>Мишенная группа</u> А.В. Сабельников

Газонаполненные сепараторы ДЦ-280

FHC-3: GRAND (Gasfilled Recoil Analyzer and Nuclei Detector)

Преимущества для химии:

- Камера сбора ядер отдачи без пучка ускоренных ТИ
- «чистые» условия для химии
- очистка фона
- Гелий
- Трансмиссия 50 %

Два отвода

Создание, эксплуатация и исследования:

А.Г. Попеко

А.В. Еремин

А.И. Свирихин

Сектор - реакции образования и структура тяжелых ядер

Тестовые эксперименты

 48 Ca + 174 Yb \rightarrow 222 Th*

 $Q_{v} \: D_{30} \: \bm{Q_{v}} \: \bm{Q_{h}} \: D_{15}$

Январь 2022 г.

Тестовые эксперименты

⁴⁸Ca + ²⁰⁸Pb → ²⁵⁶No* Апрель 2022 г.

Криогенный детектор:

установка для химических исследований на пучках тяжелых ионов

газоадсорбционная хроматография (термохроматография)

Группа газовой химии

Общая схема экспериментов

Камера сбора ядер отдачи

Химия TI (Nh) на криодетектор/SHELS

Моделирование газовых потоков в ЛЯР

ПO COMSOL

Оценка эффективности площадь окна vs $T_{1/2}$ Fl-287

Оценка эффективности площадь окна vs $T_{1/2}$ Fl-287

D, MM	t, c	N _{max}	N_0	$\sum N_0$	N(T _{1/2})	$\sum N(T_{1/2})$	$\eta(N_{max}),$	$\eta(T_{1/2}), \frac{\eta(T_{1/2})}{\%}$
	0,2		15		11,24			
	0,4		5		2,81			
30	0,6	43	5	30	2,10	1731	0.40	0.11
50	0,8	-15	2	50	0,63	17,51	0,40	0,11
	1		0		0,00			
	1,2		3		0,53			
	0,2		15		11,24			
	0,4		12		6,73			
40	0,6	79	10	52	4,20	26.07	0.33	0.16
70	0,8	17	6	52	1,89	20,07	0,55	0,10
	1		7		1,65			
	1,2		2		0,35			
	0,2		11		8,24			
	0,4		15		8,42			
50	0,6	128	21	88	8,83	36.63	0.29	0.23
50	0,8	120	23	00	7,24	50,05	0,29	0,25
	1		12		2,83			
	1,2		6		1,06			
	0,2		15		11,24			
	0,4		25		14,03			
60	0,6	160	23	94	9,67	43 12	0.27	0.27
00	0,8	100	14		4,41	13,12	0,27	0,27
	1		13		3,07			
	1,2		4		0,71			

Торможение / вынос / турбулентность

COMSOL Multiphysics

Измерение пробегов ядер отдачи Hg, Ra, No и времени транспорта

2 тестовых сеанса в июне и ноябре

- ⁴⁰Ar, ⁴⁸Ca beams
- Er₂O₃, Sm₂O₃, Yb₂O₃ targets ~ 400 μg/cm², ²⁰⁸Pb target (150 μg/cm²)
- GRAND

Измерение пробегов

Измерение времени транспорта на пучке с изотопами Нg

Е_{лаб,} МэВ

nikolay.aksenov@jinr.ru / Совещание «Сверхтяжелые атомы» / 19.12.2022

Измерение времени транспорта на пучке с изотопами Нg

Время первого фронта 0.25 с – 10 % Среднее время транспорта 1 с – 25 % Полное время 2.5 с – максимальная эффективность 80 %

5

Ход эксперимента и первые результаты

Ри-242 729 мкг/см²

Rec_escape(287Fl)_28	83Cn_fission. 3n	file_48CA42PU28.000/48CA42PU28.013		
	strips	energy	dT	
Recoil		19857 keV	1.002 s	
Alpha1	68:15	10034 keV	12.84 s	
Alpha2		0546 koV		
		9340 KEV	07 ms	
Fission		3791 ch	97 IIIS	

Rec_287F1_283Cn	_fission. 3n	file_48CA42PU28.00	00/48CA42PU28.017
	strips	energy	dT
Recoil		20971 keV	
			704.6 msec
Alpha1		10025 keV	
	38:51		660.7 msec
Alpha2		9535 keV	
			485 msec
Fission		2887 ch	

Интеграл: 1.04*1018 частиц

nikolay.aksenov@jinr.ru / Совещание «Сверхтяжелые атомы» / 19.12.2022

	дата	файл	ток, мкА	время, с	инт.	инт. Частиц	событие		
1	29.11.	NOVPU01	20	18343	366860	2,3E+17			
2	29.11.	NOVPU02	20	19363	387260	2,4E+17			
3	29.11.	NOVPU03	20	58107	1162140	7,3E+17	1	1,2E+18	
4	30.11.	NOVPU04	20	28337	566740	3,5E+17			
5	30.11.	NOVPU05	20	27540	550800	3,4E+17		7,0E+17	
6	01.12.	CaPu01	20	24279	485580	3,0E+17			
7	01.12.	CaPu02	20	1689	33780	2,1E+16			
8	01.12.	CaPu03	20	7022	140440	8,8E+16			
9	01.12.	CaPu04	20	13192	263840	1,6E+17			
10	01.12.	CaPu05	20	22521	450420	2,8E+17		8,6E+17	
11	02.12.	CaPu06	20	28800	576000	3,6E+17			
12	02.12.	CaPu07	20	7527	150540	9,4E+16			
13	02.12.	CaPu08	20	22899	457980	2,9E+17		7,4E+17	
14	03.12.	CaPu09	20	31522	630440	3,9E+17			
15	03.12.	CaPu10	20	29507	590140	3,7E+17			
16	03.12.	CaPu11	20	28727	574540	3,6E+17		1,1E+18	
17	04.12.	CaPu12	20	25386	507720	3,2E+17			
18	04.12.	CaPu13	20	29134	582680	3,6E+17			
19	04.12.	CaPu14	20	28721	574420	3,6E+17		1,0E+18	5,7E+18

Оценка эффективности по FI-287:

сепаратор	0,5
фокальная плоскость	0,44
решетка	0,7
пленка	0,95
торможение	0,9
вынос из камеры	0,1
транспорт	1
детектирование	0,8
эффективность	0,011

1,1E+19