Семинар ЛЯП, 16 марта 2023

Изучение нейтринных осцилляций в ускорительных экспериментах NOvA / DUNE Самойлов О.Б. для группы NOvA / DUNE Лаборатория ядерных проблем им. В.П.Джелепова ОИЯИ

Содержание семинара

- Основная цель проектов изучение феномена нейтринных осцилляций, которые позволяют измерить неизвестные параметры нейтрино:
 - иерархию масс нейтрино,
 - фазу СР-нарушения в лептонном секторе, если она отлична от нуля,
 - значение угла смешивания θ₂₃ с определением так называемого октанта.
- * План семинара:
 - NOvA, DUNE и другие эксперименты с похожими задачами.
 - Феномен нейтринных осцилляций.
 - Задачи группы ОИЯИ в обоих проектах.
 - Планы по набору данных и анализу в эксперименте NOvA на 2024-2026 гг.
 - Задачи группы ОИЯИ на этот период в эксперименте DUNE.
- * Семинар проводится в связи с продлением проекта NOvA/DUNE в рамках темы 1099.

NuMI Off-Axis v_e Appearance Experiment

NuMI Off-Axis ve Appearance Experiment

Поколения LBNE во FNAL: MINOS \rightarrow NOvA \rightarrow DUNE

Почему ускорители?

Ускорительный комплекс в Лаборатории Ферми

- * Нейтрино рождается в Главном Инжекторе (Main Injector, NuMI) протонов в следующей цепочке:
- Линак 750 кэВ
- Бустер 400 МэВ
- Ресайклер 8 ГэВ
- NuMI 120 ГэВ
- на углеродную мишень

Пучок протонов для нейтринных экспериментов

Поток нейтрино

- Ускоренный пучок протонов (120 ГэВ) сбрасывается на углеродную мишень, рождая мезоны, которые в свою очередь рождают нейтрино (в основном мюонного типа).
- * Каждый 1.3 сек протонный сброс формирует 6+6 батчей нейтрино во временном окне 10 мкс.
- Первоначальная проектируемая мощность для NOvA составляет 700 кВт, интенсивность 6 × 10²⁰ POT/год. (POT = Proton On Target, протонов-на-мишень).
- * Пиковая мощность достигала 895 кВт 7 июля 2022.
- Плановая до 2026 года 900 кВт.

Осцилляции нейтрино (в вакууме)

$$\begin{split} |\Delta m_{32}^2| &= |m_3^2 - m_2^2| \\ &\simeq 2.5 \times 10^{-3} \text{ eV}^2 \\ \nu_{\mu} \to \nu_{\mu} \\ \nu_{\mu} \to \nu_{\tau} \\ \end{split} \begin{array}{l} \Delta m_{31}^2 \simeq \Delta m_{32}^2 \\ \nu_e \to \nu_{e} \\ \nu_{\mu} \to \nu_e \\ \nu_{\mu} \to \nu_e \\ \end{matrix} \begin{array}{l} \Delta m_{21}^2 &= |m_2^2 - m_1^2| \\ \simeq 7.5 \times 10^{-5} \text{ eV}^2 \\ \nu_e \to \nu_e \\ \nu_e \to \nu_e \\ \nu_e \to \nu_{\mu}, \nu_{\tau} \\ \end{split}$$

Эксперименты атмосферные и с длинной базой Эксперименты реакторные и с длинной базой Эксперименты солнечные и реакторные

Осцилляции нейтрино (в вакууме)

 $\begin{pmatrix} N_e \\ N_\mu \end{pmatrix} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ N_{\mu 2} & V_{\mu 3} & V_{\mu 3} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix}$

H=VEVT

Осцилляции нейтрино (в вакууме)

 $\begin{pmatrix} N_e \\ N_{\mu\nu} \\ N_{\mu\nu} \end{pmatrix} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu\nu} & V_{\mu\nu} & V_{\mu3} \\ V_{\mu\nu} & V_{\mu\nu} & V_{\mu3} \\ V_{\mu\nu} & V_{\mu3} & V_{\mu3} \end{pmatrix} \begin{pmatrix} N_{\mu} \\ N_{\mu} \\ N_{\mu} \end{pmatrix}$

H=UEOV => H=Hot Hbergroups + HNSI

 $\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\chi} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\chi1} & U_{\chi2} & U_{\chi3} \end{pmatrix} \begin{pmatrix} v_{4} \\ v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \Longrightarrow \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\mu} \\ v_{\mu} \end{pmatrix} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\chi1} & U_{\chi2} & U_{\chi3} \\ U_{\chi1} & U_{\chi2} & U_{\chi3} \end{pmatrix} \begin{pmatrix} v_{4} \\ v_{2} \\ v_{3} \\ v_{5} \end{pmatrix} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{\mu3} \\ U_{\chi1} & U_{\chi2} & U_{\chi3} \\ U_{\chi3} & U_{\chi2} & U_{\chi3} \\ U_{\chi3} & U_{\chi3} & U_{\chi3} \end{pmatrix}$

[June 2019 meeting @ Sussex University, Brighton, UK]

Схема работы с двумя детекторами

- Ближний детектор
- расположен в 1 км после пучковой мишени, вес 300 тонн.
- выполняет роль монитора и измеряет неосцилляционный спектр пучка
- данные БД используются для предсказания числа событий в ДД (процедура экстраполяции)

- * Дальний детектор
- расположен на расстоянии 810 км от пучковой мишени, вес 14 кт.
- измеряет осцилляционный нейтринный пучок
- учитывает систематические погрешности
 экстраполяции из БД
- 3 → ДД идентичен БД

Детекторы NOvA

- ПВХ экструзия, TiO2 и жидкий сцинтиллятор
- минеральное масло + 5% псевдокумола.
- * Считывание сигнала через светосмещающее оптоволокно на ЛФД.
- → ДД состоит из ~344,000 каналов.

3.87 cm

- среднее значение фотоэлектронов от мюонов, пересекающих дальний край, составляет ~40.
- Плоскости детектора расположены ортогонально и чередуются между собой.

3.87cm

15.6m

Плоскость вертикальных ячеек

 Плоскость горизонтальных ячеек 14

Нейтринные взаимодействия

Отбор событий при помощи CVN

- * Для идентификации событий используется свёрточная нейронная сеть CVN (Convolutional Visual Network).
- * Техника основана на алгоритмах GoogLeNet (компьютерное зрение и машинное обучение).
- Классификатор по нескольким меткам та же сеть, которая использовалась в нескольких анализах: v_e, v_µ, атмосферные мюоны, нейтральные токи, …
- A. Aurisano et. al, JINST 11, P09001 (2016)

Предсказание событий в ДД

Большая статистика, неосцилляционные данные в БД,

Данные БД для *v*_µ (разделены по разрешению) Данные БД для *v*_e (только фон)

Результат 2020 v_{μ} в дальнем детекторе

Результат 2020 v_e в дальнем детекторе

<i>v</i> е кандидаты в данных	58
Наилучшее предсказание	59
Суммарный фон	15.0
🔿 атмосферные мюоны	3.3
➡ пучок	11.1
→ "обратный знак" (v _e)	0.7

– <i>v</i> е кандидаты в данных	27	ι.4 σ
Наилучшее предсказание	27	Ve 4
Суммарный фон	10.3	Ме
🔿 атмосферные мюоны	1.1	ден
➡ пучок	7.0	BB
₂₀ ➡ "обратный знак" (<i>v</i> _e)	2.2	Пс

Асимметрия $P(v_e) - P(\bar{v}_e) / P(v_e) + P(\bar{v}_e)$

На 25% согласуется с нулем.

Альтернативный статистический подход

- Байесовский анализ
 согласуется с
 фриквентистским.
- * Лучший фит: $\Delta m_{3L}^{2} = (2.41 \pm 0.07) \times 10^{-3} B^{2}$ $Siw^{2} \overline{D}_{23} = 0.57 \pm 0.03$
 - S = 0.82 TT

Нормальная иерархия

* Прогресс с совместным анализом NOvA+T2K.

Будущее

- Набор данных планируется до 2026 года:
 - 50:50 нейтрино и антинейтрино
 - Представленная статистика составляет ~30%
- * На основе текущих результатов ожидается:
 - → до 4 *о* чувствительности к иерархии масс
 - >2 *σ* чувствительности к СР нарушению
- * Совместный анализ с результатами Т2К.

Вклад ОИЯИ в NOvA

- Созданы два тестовых стенда для измерения параметров электроники и свойств сцинтиллятора. Измерения, проведенные на этих стендах в Дубне, сыграли существенную роль в уточнении процедуры моделирования установки.
- С 2015 года в ОИЯИ введен в эксплуатацию центр удаленного контроля (ROC-Dubna), позволяющий отслеживать работу и управлять экспериментом из Дубны.
 Создание этого центра существенно расширило возможности участия в эксперименте не только ОИЯИ, но и других российских коллег.
- Сотрудники ОИЯИ участвуют в разработке программного обеспечения и анализе данных NOvA, используя вычислительные возможности Института и поддержку сотрудников ЛИТ.

NOvA-вцы в "контрол-руме" ROC-Dubna

Люди из ОИЯИ

- Людмила Колупаева работает над основным осцилляционным анализом в группе "3flavor", является со-координатором группы продакшн, вовлечена в работу группы GNA ЛЯП ОИЯИ, а также группе совместного осцилляционного анализа NOvA-T2K.
- Анастасия Калиткина работает над основнымосцилляционным анализом в группе "3flavor".
- Андрей Шешуков разработал, протестировал и запустил систему детектирования сигнала от вспышек сверхновых в нашей Галактике, ждем сигнала! Конвинер одной из групп в SNEWS. Готовится защищать кандидатскую диссертацию в 2023 году.
- Никита Балашов и облачная группа ЛИТ работает над ИТ-поддержкой эксперимента NOvA (в основном на базе "Облаков" ЛИТ), контакт ОИЯИ и Фермилаба (группы FIFE).
- Игорь Какорин и теоретическая группа ЛТФ включили модель сечения взаимодействия с бегущей MA(run) в нейтринный генератор GENIE.
- Николай Анфимов и Александр Антошкин создали два измерительных стенда для отдельных компонентов детекторов NOvA (работа электроники, отклик сцинтиллятора). Работа востребована в коллаборации.
- Александр Антошкин занимается поиском медленных магнитных монополей в дальнем детекторе NOvA.
- Олег Самойлов со-координатор рабочей группы Экзотических анализов.
- Ольга Петрова, Анна Морозова, Александра Иванова проводят анализы потоков атмосферных мюонов и нейтрино.

Эксперимент DUNE

Deep Underground Neutrino Experiment

Эксперимент DUNE

Deep Underground Neutrino Experiment

- * Коллаборация DUNE:
 - >1300 участников
 - >120 организаций
 - 37 стран + ЦЕРН
- ОИЯИ официально участвует с мая 2020 года.

DUNE Collaboration

Коллаборационное совещание DUNE 23-27 января 2023 в ЦЕРН

Основные задачи DUNE

- Измерение неизвестных параметров нейтринных осцилляций:
 - иерархия масс нейтрино,
 - фаза СР-нарушения в лептонном секторе, если она отлична от нуля,
 - значение угла смешивания θ₂₃ с определением так называемого октанта.
- * Детектирование МэВ-ных нейтрино, например, от вспышек Сверхновых звёзд.
- Низкофоновые измерения, такие как поиски тёмной материи и обнаружения физики за рамками Стандартной модели.

Нейтринный пучок

- * Обновленный ускорительный комплекс NuMI будет обеспечивать мощность 1.2 MBt (Phase I) и затем планируется увеличить до 2.4 MBt (Phase II).
- * Широкий спектр нейтрино и антинейтрино в диапазоне 0-5 ГэВ.
- * Ожидаемые спектры в дальнем детекторе приведены ниже (моделирование).

Длинная база осцилляции 1300 км

Нейтрино (Forward Horn Current, FHC)

Антинейтрино (Reverse Horn Current, RHC)

Дальний детектор DUNE

* Подземная лаборатория Сэндфорд.

Дальний детектор DUNE

 Большой комплекс с использованием технологии жидкоаргоновых детекторов (ВПК, ТРС) с горизонтальным и вертикальным дрейфом электронов для идентификации частиц и измерения энергии.

Дальний детектор DUNE

- В первой фазе работы
 эксперимента планируемая
 мощность пучка составит
 1.2 МВт.
- Будет работать два 17 кт (10 кт полезного объёма) LAr ТРС модуля, один НD и один VD.
- во второй фазе 2.4 МВт.
- Четыре 17 кт LAr TPC модуля.

Ближний детектор DUNE

- Сложный комплекс детекторов, оптимизированный под измерение нейтринных взаимодействий и максимальное сокращение систематических неопределенностей в анализе данных.
- ND-LAr с той же жидко-аргоновой технологией, что и дальний детектор.
- * ND-GAr ВПК с газообразным аргоном под высоким давлением.
- В начальной конфигурации (первая фаза)
 будет установлен временный мюонный спектрометр TMS.
- * SAND детектор "монитор" нейтринного пучка.
- * Подвижная платформа DUNE-PRISM.

DUNE-PRISM

- * ND-LAr и TMS (или ND-GAr) могут передвигаться перпендикулярно пучку (Off-Axis) для изменения соотношения нейтринный событий в спектре.
- Изучение различных нейтринных потоков и применение их линейной комбинации в анализе позволит лучше предсказывать спектр в дальнем детекторе.
- * Анна Степанова (студент МГУ) является участником группы.

Контуры появления 2/

- * В полной фазе работы (2.4 МВт и четыре модуля FD) DUNE позволит провести осцилляционный анализ со статистической точностью в несколько процентов.
- * Контуры событий появления электронных нейтрино и антинейтрино для низких и высоких энергий будут выглядеть следующим образом.

Иерархия масс нейтрино

- * DUNE (и только DUNE) может определить иерархию масс нейтрино без помощи других экспериментов.
- Несколько лет достаточно для открытия и определения иерархии масс в первой фазе работы (1.2 МВт и 2 модуля дальнего детектора).

Иерархия масс нейтрино

Во второй фазе (2.4 МВт, экспозиция 800 кт-МВт-год) за
 6 лет вопрос будет разрешен на > 5σ для любых
 значений других параметров (δСР).

СР-нарушение

* Измерение на уровне 5 σ для >50% значений δ CP.

* ~10° разрешение на δ СР.

Задачи группы ОИЯИ для ND-LAr

- * С 2021 года изготовлено 4 прототипа модулей ВПК.
- Модули были протестированы на данных атмосферных мюонов.
- * Пройден этап согласования конструкции и её эксплуатации в ND-LAr (PDR).
- 2023-2024 идёт подготовка к сборке модулей 2х2 прототипа для тестового нейтринного пучка в Лаборатории Ферми.
- * Изготовление полномасштабного демонстратора запланировано на 2024 г., а его тесты на 2025 г.
- Прохождение процедуры утверждения финального варианта ближнего детектора ND-LAr (FDR).

Детали системы на семинаре Александра Селюнина 9/3/2023

Система светосбора для ND-LAr

Учёные, специалисты, высококвалифицированные инженеры (и зарубежные коллеги) в "Зелёной Лабе"

Задачи группы из ОИЯИ для SAND

- Разработка и изготовление микропрототипа строу-камеры 1-2Q 2024.
- Разработка и изготовление прототипа 1200Х600 2Q 2025.
- Изготовление комплекта строу для прототипов 1-4Q 2024.
- Создание производственной линии для монтажа и тестирования прототипов 2Q 2025.
- Изготовление комплекта строу для прототипов 1-4Q 2025.
- Монтаж и тесты.

Темур Еник на тестах в ЦЕРН

Строу камеры 4х4 для COMPASS

System for on-Axis Neutrino Detection

- * Мониторинг пучка в реальном времени.
- * Измерения сечений взаимодействия нейтрино и других процессов.
- ∗ Артём Чуканов может подтвердить, что рождается невороятное количество Л-гиперонов для различных анализов и прикладных задач.

Немного истории про ускорительные нейтринные эксперименты с длинной базой.

Первое поколение ускорительных нейтринных экспериментов с длинной базой: К2К и MINOS

- Пучок нейтрино ускорителя
 КЕК
- * Super-Kamiokande (Водный черенковский детектор)
- * База осцилляции 250 км
- * Набор данных 1999-2004
- Пучок нейтрино на ускорителе в Лабратории Ферми
- Дальний детектор (5.4 кт) в шахте Судан
- * База осцилляции 735 км
- Набор данных 2005-2012(+2016)

Текущее (второе) поколение ускорительных нейтринных экспериментов с длинной базой: Т2К и NOvA

Nova Far Detector Nova Far Detector Nova Near Detector Corrector Nova Near Detector

- Нейтринный пучок из J-PARC (Токай)
- * Super-Kamiokande
- * База осцилляции 295 км
- Набор статистики с 2009 года
- Ускорительный комплекс
 NuMI (Лаборатория Ферми)
- Жидкий сегментированный
 сцинтилляционный детектор
 в Аш-Ривер
- * База осцилляции 810 км
- Набор статистики с 2014 года

Текущее (второе) поколение ускорительных нейтринных экспериментов с длинной базой: Т2К и NOvA

- Нейтринный пучок из J-PARC (Токай)
- * Super-Kamiokande
- * База осцилляции 295 км
- Набор статистики с 2009 года
- Ускорительный комплекс
 NuMI (Лаборатория Ферми)
- Жидкий сегментированный
 сцинтилляционный детектор
 в Аш-Ривер
- * База осцилляции 810 км
- Набор статистики с 2014 года

Будущее (но уже подготавливаемое) поколение ускорительных нейтринных экспериментов с длинной базой: T2HK и DUNE

* Hyper-K

- * Усовершенствование Super-К и Т2К
- Водный черенковский детектор
- 8х больше полезная масса детектора
- 2.5 раза интенсивней нейтринный поток

- * DUNE
- * Существенное обновление NuMI
- * Жидко-аргоновый ВПК
- Широкий нейтринный спектр на оси пучка (on-axis beam)
- * База осцилляции 1300 км
- Подземная лаборатория Сэнфорд

Будущие эксперименты

Спасибо за внимание!