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Typical sizes
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Kinematics of the collisions of hadrons

P Sy < P

P, = (IPp1: P1) P, = (ip021 pz)

p12 = Iﬁf - pm2 = pzz B poz2 = _mpz (1.1)

m Herem, - proton mass, we use the system of the physical
units with z=c =1, s - system mass energy of protons.



Kinematics of the collisions of hadrons

S=—(p+p,)" =—P* =
(P + Py2)’ —(Pys + Py2)° —(Pyy + Py0)° + (Poy + Ppp) . (1.2)
P = (IS’IPO) — [pxl + px2’ pyl + py2’ pzl + p22’+i(p01 + pOZ)]

In the laboratory systems, where second proton is in
the rest

P =(P,iR)=[p,, Py, P,,i(Py +m,)] @3

and four dimensional momentum of the falling proton

denote as p:(px7 py, pz’ipo):(ﬁ,ipo)
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Quasi Cartesian coordinates on the horosphere of
Lobachevsky momentum space

2 2

P =£[e‘m (I eals) p g e
Z 2 S ? X X 5

(1.4)
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Inverse formulas

PAS PS5 - Vs (15)
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. mates on the horosphere of

Lobachevsky momentum space

Metric element in these coordinates expressed as follows

dl ?=e®/*(dg?+dq?)+dg? . @O

The element of the volume in the momentum space in the
horospherical (quasi Cortesian) coordinates

_20,
dV,, = /gda,dg,dg, =e A@dqxdqydqz - (L7)



N
duantum mecHanlca‘ variables (momenta, coordinates) on

horosphere
., 0 .. O
X =—ih—, y=—1h—. (1.8)
qx ’ qy ’ 8qx 8qy
Heisenberg-Weyl algebra is the base for definition of the
coherent states

[x.9,]=|v.q, |=-inl, [xy]=|q,q,]=0, (1.9)

[ 1]=[1y]=[0,1]=[a,.1.]=0.

Creation and annihilation operators connected with our
problem

qu+|§ qu_li qu+ll qu—|l
R ar = R 4 = R a = R. (1.10)
o2
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Yu. A. Kurochkin, I. Rybak, Dz. V. Shoukovy Coherent states on the horosphere of the three
dimensional Lobachevsky space. Doklady NAS Belarus 2014, J.Math.Phys. 57(8):082111 (2016)
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Heisenberg-Weyl algebra in terms of the creation and
annihilation operators

a3 |=0,0.[a.a [=[a.a]=[a.1]=[a.1]=0. @
m wherek,I =1,2 correspondsto X and ¥

m Definition of the coherent states and some
m properties

a,|2,)=2,|2,).8,|2,) = 2,[2,) (1.12)

(z,]z,) = exp\zl\z, (z,]z,) = exp\zz\2



Definition of the coherent states and some

properties

2,,2,) =exp(z,a; )ex

o(zza;)

®m |0,0)-vacuum state, a

0,0)=a,

“21122><21’22 ‘dﬂ(zvzz) = J‘21><21‘dﬂ(z1)J‘22><22 ‘dﬂ(zz) = |

h h
AXAqX — E, AyAqy — E

(1.15)
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Average number of the excited quanta
n, = exp(_|zl|2)<zl|a+xax | Zl> - |Zl|2 . M= eXp(—|22|2)<22 |a+yay | 22> - |22|2

O
n=n+n, :|zl|2+|22|2 (1.16)

Multiplicity distribution

exp(—n)n" (1.17)
Nl

P(n) =

The main hypothesis:
The partons are the coherent states which are built from variables of
horosphere Lobachevsky raletivistic momentum space.
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Coordinate representation of coherent states

i%/flx%y) —ﬁ[(x—ﬁRal)%(y—ﬁRaz)Z]
(x,y|z,,2,)0 e X

[(x- \/_Ral y—\/ERaZ)Z] (118)
(x,y|2,2, ‘ Je &

L=, +if, 0, = |1]cosd, B =[z[sing,, 7, = a, +iB, e, =|2,|c089,, B, =z,|sin 9,

V2Ra, =2R[z|cos = V2nReos § =, R =0,84x107



Dependence of the radius of correlations on the average multiplicity
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Figure 1. Approximation of the experimental data by the theoretical
dependence, where p0 = 1.26 0.15, p1 = 0.21 0.03, p2 = 0.40 0.03. Black dots
indicate experimental data.
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Dependence of the radius of correlations on the average multiplicity
stages 1 and 2

doi:10.17182/hepdata.132012.v1/t79
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Figure 2. Approximation of the experimental data by the theoretical
dependence py + p1 /Ny



Momentum representation of coherent states

<q q ‘Zl ZZ> D eiR\/E(Olqu‘Fagqy) % e—R%[(qx_\/EAﬂl)Z_l_(qy_\/EAﬂz)2]
X!y )

R/ a2/ g, V2 7 (119)
‘<qx’qy‘21,22>rﬂe%[(q* ZIARICHRL /A%

L=, +if,a = |1|cosd, B =|z|sing,, L=+ = z,|c0s9,, B, = z,|sin 9,

V2Ra, = V2R|z[cos g, = V2nRcos §, =, R =0,84x107



Theory Field point of view

Hadron as a scalar particle on a hyperboloid of momentum space, with
curvature determined by the energy of colliding particles

Y.Kurochkin, Y. Kulchitsky., S.Harkusha, and N.Russakovich / Solutions of the
Klein-Fock-Gordon equations and Coherent states on Horosphere of the

Lobachevsky Momentum space// Physics of elementary Particles and Atomic
Nuclei. Theory 2021, T.18, N 7, pp716-720.
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Theoretical Field picture

Hadron as a scalar particle on a hyperboloid of momentum space,
with curvature determined by the energy of colliding particles

We model an incident hadron in the laboratory reference frame as scalar
particle described by the equation Klein-Gordon-Fock

o° o o° 0o (2.1)

+ + — -S)¥Y(Xx,Y,2,%,) =0
(8X2 ayz a22 8X02 ) ( y O)

Y.Kurochkin, Y. Kulchitsky., S.Harkusha, and N.Russakovich / Solutions of the
Klein-Fock-Gordon equations and Coherent states on Horosphere of the

Lobachevsky Momentum space// Physics of elementary Particles and Atomic
Nuclei. 2021, T.18, N 7, pp716-720.
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Hadron as a scalar particle on a hyperboloid of momentum space,
with curvature determined by the energy of colliding particles

o° o o 0

2 2 2 2
-P*-P -P°+PR +S _)—2+8y2+622_8x02_8 (2.2)

OX

It is taken into account that the momentum of the system in the laboratory frame
of reference is given by the expression

P = (PiIPO) :[px’ py’ pz’i(po +mp)]
in the laboratory reference frame (rest frame, for example, of the second proton)

P=(P, P, P,,1P) =(P,1p,)

-4 momentum of the incident proton in the reference frame where the second
proton is at rest. The mass term is removed by multiplying the wave function by
the factor €Xp Imx,



Hadron as a scalar particle on a hyperboloid of momentum space,
with curvature determined by the energy of colliding particles

As is well known, the solution of Eg. (2.1) can be represented as the Fourier
integral

Y (X, Y,2,%,) =

= (27) 72 [S(P? +S)® (P,,P,,P,, P,) exp[i(xP, + yP, + P, — x,P,)]d ‘P

This integral is defined on the impulse hyperboloid, as evidenced by the -
function, and is invariant under transformations of the group of motions of
this hyperboloid on which the geometry of the three-dimensional

Lobachevsky space is realized. Transit from coordinates (1.3 to coordinates
(1,4)
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
iInvariance

28, _0; _0;
Py z0) =( I /s dg,da,da, 0" (q,.9,.9, ) expr i{xq,e s +Y0, Z

0, 2402 o 0, 2102 -4 (2.3)
+z§[e/ﬁ+(w—l)e /ﬁ]—xog[e/ﬁﬂ%ﬂ)e /ﬁ]}.

Let's make the following large-scale transformations in the above
expression

(2.4)
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles.
Scalar invariance

PE(X,Y,2,%,) =
_2q, _q; _4;
(271)_% j e / Vs dqzd(knx)d(kny)goi(knx,kny,qz)expir I{xkn, e /ﬁ +ykn € /NE +
(2.5)
% n°+n’ ~0; g n°+n? ~q,
B e B e Vg Wt e R e iy
2 S 0 2 S

Let us now consider some obvious approximations, namely

2 2
k2 % & 1. (2.6)
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Hadron as a scalar particle on a hyperboloid of momentum space,
with curvature determined by the energy of colliding particles

Then
Wi (X! Yy, Z, Xo) =

_2q, _9 _q;
(Zﬂ)_%je /ﬁdqzd(knx)d(kny)(pi(knx,kny,qz)expi i{xkn e KE + ykn e /ﬁ —

_Zg[e% _e_%]_xo %[e% +e_qz/ﬁ]}’ (2.7)
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Hadron as a scalar particle on a hyperboloid of
momentum space, with curvature determined by the
energy of colliding particles

Developing the main hypothesis adopted according to which it is
assumed that partons (constituents of the incident particle) are
excitations on the horosphere, it is natural to consider k as a fraction
of the momentum of one parton in the momenta Yxand 9, (By virtue
of the Euclidean, and hence the isotropy, it is natural to consider the
same in both directions). Since before the interaction the number of
components of a scalar hadron is not determined, we require the
iInvariance of the function under transformations
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles.
Scalar invariance.

Scale invariance will be observed

v (X,Y,2,%) =w (k Ky, z,%,) =

_2q, - -
(2%)_%_[6 /ﬁdqzd(knx)d(kny)gp*(knx,kny,qz)expi I{xkn, e /ﬁ +ykn e /ﬁ -

Y o o % 2.8
_Zg[E/ﬁ_e /E]_Xog[e/ﬁ_l_e /\E]}’ ( )

if there ¢~ is a homogeneous function in variables 4, , 4, the degree of
homogeneity -1, i.e.

¢i(knx’kny’qz):k_lk_1¢i(nx’ y’q ) k Zgo (nx’ y’q ) ¢ (qx’qqu )(2 9)
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles.
Scalar invariance

The expression, as Is easy to see, satisfies the two-dimensional
wave equation. To establish this fact, it is convenient to represent
expression () in the variables of the light cone (wave front), namely

20, q,
V/i(xl Yy, X, ) (272') J. /\qu dn dn (n q, )eXp+|[Xn e /f _|_yn e /f

X! yl

~(2+%,)— ; q/f+ (z-X,) _q/f] (2.10)
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
iInvariance

and therefore

O’y 0w Oy
=S
Towow oz ox? L (2.1)

Here the variables of light cones are introduced

W=(Z+X,),W=(Z-X,), aiw:_( +——), =%( -
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Hadron as a scalar particle on a hyperboloid of momentum space,
with curvature determined by the energy of colliding particles

We will interpret the inverse value k as a value proportional to the
number of partons. By virtue of the scale invariance described
above, function (2.9) the wave function of a quantum system
propagating along an axis is actually independent of the number of
components. The significance of the number of components will
become apparent during the period of pre-hadronization. In this
case, the resulting hadrons will be described by functions for which
the scale invariance is not satisfied. Thus, hadronization can be
considered as a second-order “phase” transition occurring near the
critical point, accompanied by violation of the scale invariance (2.5) —
(2.9) Iin the plane perpendicular to the propagation direction.
Symmetry breaking is known to be decisive for the second-order
“phase” transition
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

Now consider case when

2 2
an +ny >> 1:| (212)

k S

\Pi(xi y’Z’XO) =
_2q, _Q; _q;
(Zz)_%je /ﬁdqzd(k'nx)d(k'ny)goi(k'nx,k'ny,qz)expii[xk'nxe /ﬁ +yk'n,e /ﬁ +

(eq/ﬂk'2 : 5 _q/f) X, (eq/ﬂk'2 : 5 _%f)] (2.13)
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Since conditions (2.7) and (3.1) are two different states of the system, two

different modes of behavior before the process of multiple birth, in what
folldws for the conditions following from (3.1) we will use k 'instead k of.

Violation of scale invariance. Kinematic region of born particles. Strings.

or  Y(XY,Z,%)=
_2q, _% _0
(27[)_%".6 /\Edqzd(k'nx)d(k'ny)gf(k'nx,k'ny,qz)expiri[xk'nxe /VE+yk'nye /£+

0, n+n? -«
+(Z—XO)§(E//§+k'2—X ;r e /ﬁ)]. (2.14)

Obviously, in this case, the resulting wave is a retarded solution of
the two-dimensional wave equation as follow
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

Py Oy y_o v _Oy ov_, (215

S owow  az° o, oW 0z OX,

dy _ oy Oy _ ﬁ(e% e nS+n’ e—%)w (2.16)
ON 0z o0OX, 2 S
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Hadron as a scalar particle on a hyperboloid of momentum space,
with curvature determined by the energy of colliding particles. Scalar
non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

Let us examine conditions ( 2.6) and (2.12 ) for consistency. To do this, in
these expressions, we pass to the physical components of the 4-
momentum (1.3 ) in the laboratory system of reference. In this case,
condition (2.12 ) can be represented as

2
S s S +m-
k|2D 2 > — > 2e /\E: > z(po pZ] (217)
nx +1 y px t p y px T p y \/§
Here it is taken into account that in the laboratory system of

reference
p, 0 m, S=2mp,, P +P, =P —-p, -S. (2.18)

2
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

S 2
k'] S Epo"'m_pz)z: (Zm_pzj (2_19)
P+ Py’ Js (s jz ,
_ _pz _S
2m

2
S
. — ] » S, then
when we take into account 2m
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles.
Scalar non invariance

Violation of scale invariance. Kinematic region of born particles

(a-v) 2
K2 2;"‘2 Yo Tz (2.20)
() —.2 Zm*P

S 2 ]
1 (2m*P:) _ (Po + PZ)Z (2.21)
k’ i —_ pO - pz

2m z

Obviously, a similar condition for (2.6) in this case can be represented as

| =

1 [=+p.\ Fp\Z
2m TP, Py Pz)
— > =|——2
kNS (Pg -p, (2.22)
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
non invariance

Violation of scale invariance. Kinematic region of born particles

Let us take the expressions (2.21) and (2.22) and take into account that
while maintaining the plus sign on the right side, the directions of the
inequalities will not change, as a result from expression (2.22) we will

have
1 1 > +p, 1 +
In—>-In Zm =—In Po T Py (2.23)
k2|5 _ 2 \p,—p,
2m Pz

The state described by inequalities (2.20)—(2.22) corresponds to the

inequality
11 [\ 1 +
s« L (2m P} 1) (Pt P (2.24)
K27\ S Py~ D'

Zm - p,z
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles.
Scalar non invariance

Let us consider how the transition from the regime corresponding to
scale invariance, assuming that the incident particle potentially
consists of composite partons unobservable before the interaction
(the state of pre-hadronization) to the multiple production of
particles, can be carried out. We will assume such a transition from
the state corresponding to Inequality (2.24) to the state
corresponding to inequality (2.23) as a continuous or “phase’
transition, for which the scale invariance violation is the determining
factor and, in particular, when the wave function (2.8) — (2.10)
satisfying the two-dimensional Klein-Fock equation (2.11)
transforms into function (2.13), (2.14) that is non-invariant under
scaling transformations (2.4). This function already satisfies the
two-dimensional wave equation (2.15), which describes the strings,
and equation (2.16).
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Hadron as a scalar particle on a hyperboloid of momentum space,
with curvature determined by the energy of colliding particles. Scalar

non invariance
Violation of scale invariance. Kinematic region of born particles

Inequalities (2.23), (2.24) are not violated upto P, =0, and p, =0 when

equality is possible.
The expressions on the right side of (2.23), (2.24) are variables which are

called speed. They are usually referred to as . Those.

1 + 1 —
PotP,  _y—_LipPe EZ:EInE°+EZ (2.25)
z 0 z

y—lln
2 po_pz’ 2 po_

Resolving logarithmic inequalities (2.23), (2.24) we obtain

1 :
1 = N> CeY (2.26) o =N' K Ce”Y (2.27)
k
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
non invariance

Figure 3 Phase diagram of the transition hadron - coherent state of partons,
defined as excitations on the horosphere of the Lobachevsky momentum
space into a set of born particles. . Kinematic phase diagram demonstrating
the regions defined by inequalities (3.16), (3.17).
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Hadron as a scalar particle on a hyperboloid of momentum space,

with curvature determined by the energy of colliding particles. Scalar
non invariance

On the lines separating the phases, which are exponential functions
of the speed, inequalities (3.16), (3.17) are transformed into
equalities. In this case, we will take as a condition at the phase
boundaries and , respectively.

In inequalities (), () and in the diagram (Figure 3), the value S is
assumed to be fixed. In this case, the change in speed is completely
determined by P,, which is a consequence of condition (1.2). It
should be borne in mind the kinematic restrictions on the admissible
values of the speeds and, accordingly, the restrictions on the regions
I, 1l, lll. Kinematic restrictions single out a finite region on the plane

(Ny).



" A
Conclusion

m Thus, in our approach, we distinguish two stages of
the process.

m Stage 1 with dependence of the radius of
correlations on the average multiplicity pg + p1 v/na,
, n, < 110 corresponds to || domain on the phath
diagram

m And stage 2 n, > 110 corresponds to Ill domain on
the phath diagram Figure 3,
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