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Kinematics of the collisions of hadrons

p p⎯⎯→⎯⎯

1 01 1( , )p ip p=
2 02 2( , )p ip p=

2 2 2 2 2 2

1 1 01 2 02 pp p p p p m= − = − = − (1.1)

◼ Here - proton mass, we use the system of the physical
units with , - system mass energy of protons.
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Kinematics of the collisions of hadrons
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0 1 2 1 2 1 2 01 02( , ) [ , , , ( )]x x y y z zP P iP p p p p p p i p p= = + + + + +

In the laboratory systems, where second proton is in      

the rest 

and four dimensional momentum of the falling proton 

denote as 

0 0( , ) [ , , , ( )]x y z pP P iP p p p i p m= = +

Kinematics of the collisions of hadrons

0 0( , , , ) ( , )x y zp p p p ip p ip= =

(1.3)



Quasi Cartesian coordinates on the horosphere of 

Lobachevsky momentum space
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Inverse formulas
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Quasi Cartesian coordinates on the horosphere of 

Lobachevsky momentum space

22 2 2 2( )zq S

m x y zdl e dq dq dq−
= + +

Metric element in these coordinates expressed as follows 

The element of the volume in the momentum space in the 

horospherical (quasi Cortesian)  coordinates

2 zq

S
m x y z x y zdV gdq dq dq e dq dq dq

−

= =

(1.6).
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Quantum mechanical variables (momenta, coordinates) on 

horosphere
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Creation and annihilation operators connected with our 

problem

, , , ;
2 2 2 2

x x y y

x x y y

x x y y
Rq i Rq i Rq i Rq i

R R R Ra a a a+

+ − + −
= = = =

Heisenberg-Weyl algebra is the base for definition of the 

coherent states

Yu. A. Kurochkin, I. Rybak, Dz. V. Shoukovy Coherent states on the horosphere of the three 

dimensional Lobachevsky space. Doklady NAS Belarus 2014, J.Math.Phys. 57(8):082111 (2016)
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Heisenberg-Weyl algebra in terms of the creation and 

annihilation operators

◼ where corresponds to and

◼ Definition of the coherent states and some

◼ properties

   , , , , , , 0.k l kl k l k l k ka a I a a a a a I a I+ + + +     = = = = =     

, 1,2k l = x y

1 1 1 2 2 2z z z , z z zx ya a= =
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1 1 1exp ,z z z=
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(1.11)
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Definition of the coherent states and some 
properties

◼ -vacuum state,

( ) ( )1 2 1 2z ,z exp z exp z 0,0x ya a+ +=

0,0 0,0 0,0 0x ya a= =

1 2 1 2 1 2 1 1 1 2 2 2z ,z z ,z (z ,z ) z z (z ) z z (z )d d d I  = =  

,
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x yx q y q  =   =

(1.13)
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Average number of the excited quanta

◼
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Multiplicity distribution
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The main hypothesis:

The partons are the coherent states which are built from variables of 

horosphere Lobachevsky raletivistic momentum space. 



Coordinate representation of coherent states
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1 21 2 2
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Dependence of the radius of correlations on the average multiplicity

Figure 1. Approximation of the experimental data by the theoretical

dependence, where p0 = 1.26 0.15, p1 = 0.21 0.03, p2 = 0.40 0.03. Black dots

indicate experimental data.



Dependence of the radius of correlations on the average multiplicity 

stages 1 and 2



Momentum representation of coherent states
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Klein-Fock-Gordon equations and Coherent states on Horosphere of the 
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Theory Field point of view

Hadron as a scalar particle on a hyperboloid of momentum space, with 

curvature determined  by the energy of colliding particles



Y.Kurochkin, Y. Kulchitsky., S.Harkusha, and  N.Russakovich / Solutions of the 

Klein-Fock-Gordon equations and Coherent states on Horosphere of the 

Lobachevsky Momentum space// Physics of elementary Particles and Atomic 

Nuclei. 2021, T.18, N 7, рp716-720.

Theoretical Field picture

Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles

We model an incident hadron in the laboratory reference frame as scalar 

particle described by the equation Klein-Gordon-Fock

2 2 2 2

02 2 2 2

0

( ) ( , , , ) 0S x y z x
x y z x

   
+ + − −  =

   

(2.1)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles

2 2 2 2
2 2 2 2

0 2 2 2 2

0

x y zP P P P S S
x y z x

   
− − − + + → + + − −

   

It is taken into account that the momentum of the system in the laboratory frame

of reference is given by the expression

in the laboratory reference frame (rest frame, for example, of the second proton) 

-4 momentum of the incident proton in the reference frame where the second 

proton is at rest. The mass term is removed by multiplying the wave function by 

the factor  

0 0( , ) [ , , , ( )]x y z pP P iP p p p i p m= = +

0 0( , , , ) ( , )x y zp p p p ip p ip= =

0exp imx

(2.2)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles

As is well known, the solution of Eq. (2.1) can be represented as the Fourier 

integral

0

3
2 42

0 0 0

( , , , )

(2 ) ( ) ( , , , ) exp[ ( )]x y z x y z

x y z x

P S P P P P i xP yP zP x P d P 

→

−

 =

= +   + + −

This integral is defined on the impulse hyperboloid, as evidenced by the -

function, and is invariant under transformations of the group of motions of

this hyperboloid on which the geometry of the three-dimensional

Lobachevsky space is realized. Transit from coordinates (1.3 to coordinates

(1,4)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar 

invariance
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3
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2 2 2 2
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( , , , ) (2 ) ( , , ) exp {

[ ( 1) ] [ ( 1) ]}.
2 2

.

z z z
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q q q
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z x y x y z x y

q q q q
x y x ys s s s

x y z x e dq dq dq q q q i xq e yq e

q q q qS S
z e e x e e

S S

 
− − −−→ 

− −

 =  + +

+ +
+ + − − + +



Let's make the following large-scale transformations in the above 

expression

x xq kn= y yq kn=

(2.3)

(2.4)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles.  

Scalar invariance

0
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[ ( 1) ] [ ( 1) ]}.
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 



− − −− 

− −

 =
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+ +
+ + − − + +



Let us now consider some obvious approximations, namely

(2.5)

(2.6)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles

Then

0
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[ ] [ ]},
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z z z

z z z z

q q q
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z e e x e e



 



− − −− 

− −

=

 + −

− − − +



(2.7)



Hadron as a scalar particle on a hyperboloid of 

momentum space, with curvature determined by the 

energy of colliding particles

Developing the main hypothesis adopted according to which it is

assumed that partons (constituents of the incident particle) are

excitations on the horosphere, it is natural to consider k as a fraction

of the momentum of one parton in the momenta and . (By virtue

of the Euclidean, and hence the isotropy, it is natural to consider the

same in both directions). Since before the interaction the number of

components of a scalar hadron is not determined, we require the

invariance of the function under transformations

yqxq



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. 

Scalar invariance.

Scale invariance will be observed

0 0
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( , , , ) ( , , , )
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[ ] [ ]},
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z z z

z z z z
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x y z x kx ky z x
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S S
z e e x e e

 

 

 

− − −− 

− −

= =

 + −

− − − +



if there       is a homogeneous function in variables       ,       the degree of 

homogeneity -1, i.e.


xq
yq

1 1 2( , , ) ( , , ) ( , , ) ( , , )x y z x y z x y z x y zkn kn q k k n n q k n n q q q q    − −  −  = = =

(2.8)

(2.9)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles.  

Scalar invariance

The expression, as is easy to see, satisfies the two-dimensional 

wave equation. To establish this fact, it is convenient to represent 

expression () in the variables of the light cone (wave front),  namely

2
3

2
0

0 0

( , , , ) (2 ) ( , , ) exp [

( ) ( ) ].
2 2

.

z z z

z z

q q q

S s s
z x y x y z x y

q q

s s

x y z x e dq dn dn n n q i xn e yn e

S S
z x e z x e

  
− − −− 

−

=  + −

− + + −



(2.10)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar 

invariance

Here the variables of light cones are introduced

0 0( ), ( ),w z x w z x= + = −
0

1
( ),

2w z x

  
= +

  
0

1
( )

2w z x

  
= −

  

2 2 2

2 2

0

S
w w z x

  


  
− = − =
   

and therefore

(2.11)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles

We will interpret the inverse value as a value proportional to the

number of partons. By virtue of the scale invariance described

above, function (2.9) the wave function of a quantum system

propagating along an axis is actually independent of the number of

components. The significance of the number of components will

become apparent during the period of pre-hadronization. In this

case, the resulting hadrons will be described by functions for which

the scale invariance is not satisfied. Thus, hadronization can be

considered as a second-order “phase” transition occurring near the

critical point, accompanied by violation of the scale invariance (2.5) –

(2.9) in the plane perpendicular to the propagation direction.

Symmetry breaking is known to be decisive for the second-order

“phase” transition

k



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

Now consider case when 

0
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2 2 2 2
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(2.12)

(2.13)



Since conditions (2.7) and (3.1) are two different states of the system, two 

different modes of behavior before the process of multiple birth, in what 

follows for the conditions following from (3.1) we will use      instead        of .

Violation of scale invariance. Kinematic region of born particles. Strings.

or 0

2
3

2

2 2

2

0

( , , , )

(2 ) ( ' ) ( ' ) ( ' , ' , ) exp [ ' '

( ) ( ' )].
2

z z z

z z

q q q

S s s
z x y x y z x y

q q
x ys s

x y z x

e dq d k n d k n k n k n q i xk n e yk n e

n nS
z x e k e

S

 



− − −− 

−

 =

 + +

+
+ − +



Obviously, in this case, the resulting wave is a retarded solution of 

the two-dimensional wave equation as follow

'k
'k k

(2.14)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

2 2 2

2 2

0

0
w w z x

    
− = − =
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0

0
w z x
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(2.15)

(2.16)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

Let us examine conditions ( 2.6) and (2.12 ) for consistency. To do this, in 

these expressions, we pass to the physical components of the 4-

momentum (1.3 ) in the laboratory system of reference. In this case, 

condition (2.12 ) can be represented as

22
2 0

2 2 2 2 2 2
'

zq
zS

y y yx x x

p m pS S S
k e

n n p p p p S

− + − 
= =  

+ + +  

0 ,p m 02 ,S mp=
2 2 2 2

0 .x y zp p p p S+ = − −

Here it is taken into account that in the laboratory system of 

reference

(2.17)

(2.18)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

Violation of scale invariance. Kinematic region of born particles. Strings.

2

2

2 0

2 2 2

2

2
'
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z

z

yx

z

S
p

p m pS m
k

p p S S
p S

m

 
− + −   

= 
+    

− − 
 

when we take into account
then

(2.19)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. 

Scalar  non invariance

Violation of scale invariance. Kinematic region of born particles

Obviously, a similar condition for (2.6) in this case can be represented as

(2.20)

(2.21)

(2.22)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

Violation of scale invariance. Kinematic region of born particles

Let us take the expressions (2.21) and (2.22) and take into account that 

while maintaining the plus sign on the right side, the directions of the 

inequalities will not change, as a result from expression (2.22) we will 

have

The state described by inequalities (2.20)–(2.22) corresponds to the 

inequality

(2.23)

(2.24)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. 

Scalar  non invariance

Let us consider how the transition from the regime corresponding to

scale invariance, assuming that the incident particle potentially

consists of composite partons unobservable before the interaction

(the state of pre-hadronization) to the multiple production of

particles, can be carried out. We will assume such a transition from

the state corresponding to inequality (2.24) to the state

corresponding to inequality (2.23) as a continuous or “phase”

transition, for which the scale invariance violation is the determining

factor and, in particular, when the wave function (2.8) – (2.10)

satisfying the two-dimensional Klein-Fock equation (2.11)

transforms into function (2.13), (2.14) that is non-invariant under

scaling transformations (2.4). This function already satisfies the

two-dimensional wave equation (2.15), which describes the strings,

and equation (2.16).



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

Violation of scale invariance. Kinematic region of born particles

Inequalities (2.23), (2.24) are not violated up to           , and               when 

equality is possible.

The expressions on the right side of (2.23), (2.24) are variables which are 

called speed. They are usually referred to as . Those.

0zp = 0zp = 0zp =

0

0

1
ln ,

2

z

z

p p
y

p p

+
=

−

0 0

0 0

1 1
ln ln

2 2

z z

z z

p p p p
y

p p p p

+ −
− = − =

− +

Resolving logarithmic inequalities (2.23), (2.24) we obtain

(2.25)

(2.26) (2.27)



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

Figure 3 Phase diagram of the transition hadron - coherent state of partons, 

defined as excitations on the horosphere of the Lobachevsky momentum 

space into a set of born particles. . Kinematic phase diagram demonstrating 

the regions defined by inequalities (3.16), (3.17).



Hadron as a scalar particle on a hyperboloid of momentum space, 

with curvature determined by the energy of colliding particles. Scalar  

non invariance

On the lines separating the phases, which are exponential functions 

of the speed, inequalities (3.16), (3.17) are transformed into 

equalities. In this case, we will take as a condition at the phase 

boundaries and , respectively.

In inequalities (), () and in the diagram (Figure 3), the value S is

assumed to be fixed. In this case, the change in speed is completely

determined by , which is a consequence of condition (1.2). It

should be borne in mind the kinematic restrictions on the admissible

values of the speeds and, accordingly, the restrictions on the regions

I, II, III. Kinematic restrictions single out a finite region on the plane

(N,y ).

zp



Conclusion

◼ Thus, in our approach, we distinguish two stages of

the process.

◼ Stage 1 with dependence of the radius of 

correlations on the average multiplicity 𝑝0 + 𝑝1 𝑛𝑎,
, 𝑛𝑎 < 110 corresponds to II domain on the phath

diagram 

◼ And stage 2 𝑛𝑎 > 110 corresponds to III domain on 

the phath diagram Figure 3,

◼
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