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Foldy-Wouthuysen
transformation in (2+1)-space
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Relativistic Foldy-Wouthuysen (FW) transformation in (2+1)-
and (3+1)-spaces is the same. U is the transformation

operator. The method used is the only method giving an exact
form of leading operators of the zero and first ordersin . ox

and & are even terms and @is an odd term.

A.J. Silenko, J. Math. Phys. 44, 2952 (2003): Phys. Rev. A 91,
022103 (2015).
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Foldy-Wouthuysen
Hamiltonian for the planar
graphene electron in electric
and magnetic fields



" B Conventional choice:
7 = (%74 7) = (0% 70" 76%), o are Pauli matrices
= 2 = diag (1, -1, -1)

Dirac equation:

: [ 0 0
”(8 +7eA)w:mw:O, p:_7h(@Xl’5X2j.

7 (Po—€A)-Y-(P—€A)+m |y =0, p,= %, T=p-eA.
10
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In this equation:
M=m, 6 =€A,, O=0-T.
Dirac equation in the Foldy-Wouthuysen representation:
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l.— Alternative choice:

The original Dirac matrices can be used

Y. E. Lozovik, S. P. Merkulova and A. A. Sokolik, Collective
electron phenomena in graphene, Phys.-Usp. 51, 727 (2008).

When the original Dirac matrices are utilized, the
relativistic FW Hamiltonian has the form
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1 ' 1T 44. I . E E
Hiw = pe+edo N { e(e +m) (7

—E xm)3s,  e=+Vm2+72—eXsB.
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In this case, the spin can have two values for any (positive
and negative) energy.
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Paull matrices vs Dirac
matrices



A “Schrédinger = ultra-relativistic C massless L massive
fermions”™ Dirac particles Dirac fermions chiral fermions
E

K. Geim, Graphene: Ky / / /
Status and Prospects,

Science 324, 1530 (2009). )
H=p2/2m" H=cG-p H=v.G-p =g-.p2/2m-

Fig. 2. Quasi-particle zoo. (A) Charge carriers in condensed matter physics are normally described by
the Schrodinger equation with an effective mass m* different from the free electron mass (p is the
momentum operator). (B) Relativistic particles in the limit of zero rest mass follow the Dirac equa-
tion, where ¢ is the speed of light and & is the Pauli matrix. (C) Charge carriers in graphene are
called massless Dirac fermons and are described by a 2D analog of the Dirac equation, with the
Fermi velocity vg = 1 % 10° m/s playing the role of the speed of light and a 2D pseudospin matrix &
describing two sublattices of the honeycomb lattice (3). Similar to the real spin that can change its
direction between, say, left and rnght, the pseudospin is an index that indicates on which of the two
sublattices a quasi-particle is located. The pseudospin can be indicated by color (e.g., red and green).
(D) Bilayer graphene provides us with yet another type of quasi-particles that have no analogies.
They are massive Dirac fermions described by a rather bizarre Hamltonian that combines features of
both Dirac and Schrodinger equations. The pseudospin changes its color index four times as 1t moves
among four carbon sublattices (2—4).
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C massless
Dirac fermions

K. Geim, Graphene:
Status and Prospects,
Science 324, 1530 (2009).
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(C) Charge carriers in graphene are
called massless Dirac fermions and are described by a 2D analog of the Dirac equation, with the
Fermi velocity ve = 1 x 10° m/s playing the role of the speed of light and a 2D pseudospin matrix &
describing two sublattices of the honeycomb lattice (3). Similar to the real spin that can change its
direction between, say, left and right, the pseudospin is an index that indicates on which of the two
sublattices a quasi-particle is located. The pseudospin can be indicated by color (e.g., red and green).
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Electromagnetic field and angular momentum tensors in
(2+1)-space

(0 E, E, .
F,=|-E, 0 -B|=(EB), F,= Y
’ ooox" o ox”
-E, B 0,
(0 -K, K,
=Y1K, 0 L :(—K,—L):(Z[ctp—%}{j,
K, -L 0

B and L (and, therefore, the spin) are
numbers, positive and negative. As a
result, the spin should have two
components, +1/2 and -1/2.

L =x“p" - x"p”.

As aresult, the use of the Pauli matrices is unsatisfactory!



Exact solution for the planar
graphene electron in a
uniform magnetic field
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For the reduced spin matrices, the relativistic FW
Hamiltonian takes the form

Hrw = D’g\/ﬂlg + T2 — eoqa 3.
This equation can be presented as follows:

vVm2 + 72 —eB 0
0 —vVm2+7m2+eB

The Dirac equation with the reduced matrices does not
describe the true spin. It follows from these equations that,
In particular, a spin-1/2 particle in positive-energy states
has only one spin value. Such a spin is not an additional
degree of freedom.

HFW’ —
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Quantum mechanics with the Dirac matrices

In the magnetic field only

Hrw = By/m2 + 72 — Y3B.

In this case, the spin has two values for any (positive and
negative) energy.
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In the FW representation (positive energies), the exact equation
In any static uniform or nonuniform magnetic field reads

2 2
H ey :\/m +1° -0,B.

For the uniform magnetic field, m=0, and symmetric gauge
A,=Br/2, A=0,

2D 2,2 2 2
—V_2L+ieBa+eBr -2esB =67, Vi:a—2+18+1282.
0 4 oc ror r°og

The exact wave eigenfunctions are the well-known
eigenfunctions of the operator w? with the symmetric gauge.
They are based on the Laguerre polynomials:

Dpw = Aexp(ife) f Dl Ppwrdrde = 1,

=Y |£] ? 2 f
Car | V2r ol 2r- re | 2n! 2
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The energy spectrum for the zero mass is given by

5=y(2n+1+|1]++2s)|e|B, s=t1/2.
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For the uniform magnetic field, m=0, and the formed Landau
gauge A,=-By, A =0,
0° 0
+ :
5)(2 8y2
The exact wave eigenfunctions are the well-known

eigenfunctions of the operator 2 with the former Landau
gauge. They are based on the Hermite polynomials:

o e ()

-V? + 2ieBy ai +e°B’y*-2esB=6°, V: =
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The energy spectrum for the zero mass is the same:

6:\/(2n+1+25)|e|B, s =11/2.
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(C) LL peak energies for applied fields of
1to 8T, showing a collapse of the data when plotted versus square root of
LL index and applied field. The solid line shows a linear fit yielding a
characteristic velocity of ¢ = (1.128 + 0.004) x 10° ms™* (20). (Inset) The
shift in the LL, peak position as a function of applied field (symbols). The
error 1s smaller than the symbol size. The solid line 1s a linear fit to the data
points.
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Multiwave Hermite-Gauss
beams of graphene electrons
In the free space
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Multiwave Hermite-Gauss beam in the free space are well-
known (in the paraxial approximation) for photons and
electrons:
Hermite—Gaussian Modes, PR Photonics Encyclopedia,
https://www.rp-photonics.com/hermite _gaussian_modes.html|
F. Pampaloni, J. Enderlein, Gaussian, Hermite-Gaussian, and

Laguerre-Gaussian beams: A primer, arXiv:physics/0410021
(2004).
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The beam radius Rayleigh length The radius of curvature R of the wave front
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https://www.rp-photonics.com/hermite_gaussian_modes.html

' Paraxial Hermite-Gauss beam in the free (2+1)-space
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The beam radius Rayleigh length The radius of curvature R of the wave front
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v="P (v)<c.

(3

Due to the hidden transversal motion, the beam is subluminal.

§=\p;+p;, M=\&-p;.

Quanta of graphene electrons in multiwave states have
effective quantized masses (<p,*> is quantized).
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Summary

Foldy-Wouthuysen transformation in (2+1)-space
has been fulfilled in the relativistic’’ case
~oldy-Wouthuysen Hamiltonian for the planar

graphene electron in electric and magnetic fields
nas been derived

nitial Dirac equation in (2+1)-space should utilize
usual Dirac matrices but not Pauli ones

Exact solution for the planar graphene electron in a
uniform magnetic field has been obtained
Multiwave Hermite-Gauss beams of graphene

electrons in the free (2+1)-space have been
considered
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