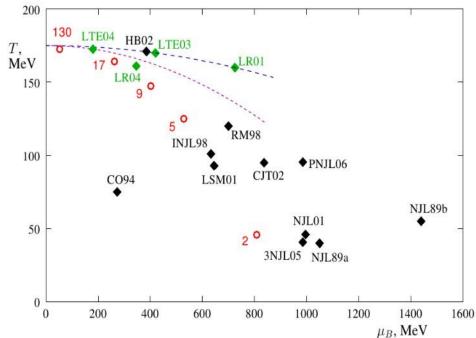
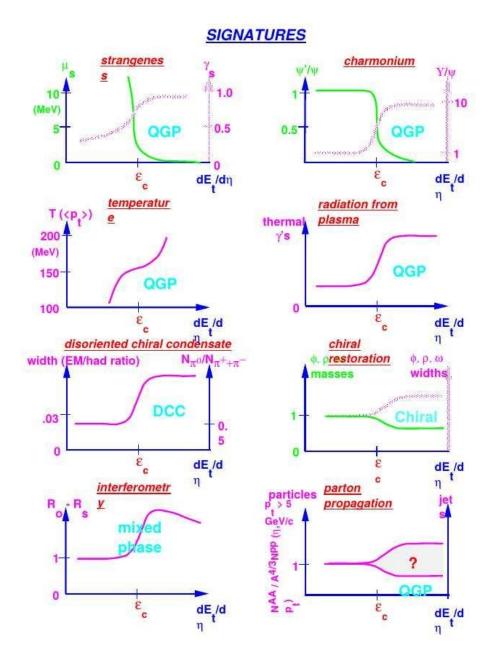





The Actual Problems of Microworld Physics August 28 2023 Minsk


#### ROGACHEVSKY Oleg JINR

#### **QCD phase diagram**



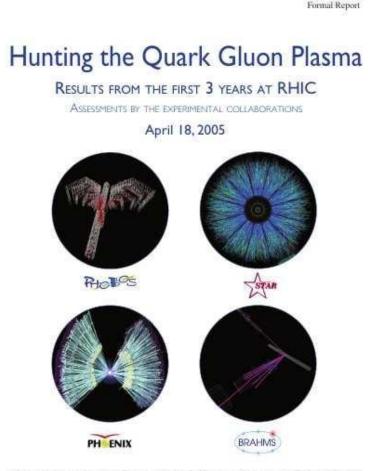

#### M. Stephanov

XXIV International Symposium on Lattice Field Theory July 23-28 2006 Tucson Arizona, US arXiv:hep-lat/0701002v1



### **Theoretical predictions**




#### The Search for the Quark-Gluon Plasma

arXiv:hep-ph/9602235 John W. Harris, Berndt Müller

Signatures of quark-gluon plasma formation and the chiral phase transition. The expected behavior of the various signatures is plotted as a function of the measured transverse energy, which is a measure of the energy density, in the region around the critical energy density  $\varepsilon_c$  of the transition. When two curves are drawn, the hatched curve corresponds to the variable described by the hatched ordinate on the right. See text of review for details

# The Quark-Gluon-Plasma is Found at RHIC 2005

BNL -73847-2005



Relativistic Heavy Ion Collider (RHIC) • Brookhaven National Laboratory, Upton, NY 11974-5000

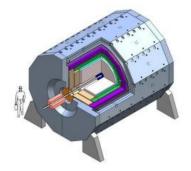


#### CONTENTS

| Forward                                                                                                                                                                   | i   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Quark Gluon Plasma and Color Glass Condensate at RHIC?<br>The Perspective from the BRAHMS Experiment                                                                      | 1   |
| Formation of Dense Partonic Matter in Relativistic Nucleus-Nucleus Collisions<br>at RHIC: Experimental Evaluation by the PHENIX Collaboration                             | 33  |
| The PHOBOS Perspective on Discoveries at RHIC                                                                                                                             | 159 |
| Experimental and Theoretical Challenges in the Search for the<br>Quark Gluon Plasma: The STAR Collaboration's Critical Assessment<br>of the Evidence from RHIC Collisions | 253 |

The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high density and temperature – a medium in which the predictions of QCD can be tested, and new phenomena explored, under conditions where the relevant degrees of freedom, over nuclear volumes, are expected to be those of quarks and gluons, rather than of hadrons. This is the realm of the quark gluon plasma, the predicted state of matter whose existence and properties are now being explored by the RHIC experiments.

#### MPD project & mega-project NICA


#### 2016



Version 1

The MultiPurpose Detector (MPD) to study Heavy Ion Collisions at NICA

Letter of Intent



Dubna, 2008

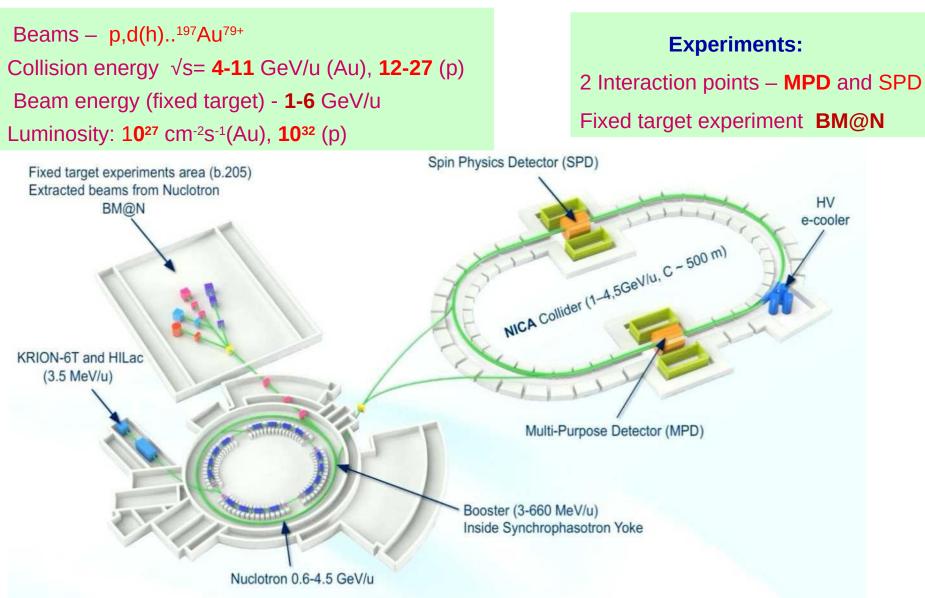
#### СОГЛАШЕНИЕ

между Правительством Российской Федерации и международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных исследований о создании и эксплуатации комплекса сверхпроводящих колец на встречных пучках тяжелых ионов NICA

Правительство Российской Федерации и международная межправительственная научно-исследовательская организация Объединенный институт ядерных исследований (далее — Объединенный институт ядерных исследований), в дальнейшем именуемые Сторонами,

выражая общее желание содействовать укреплению потенциала Российской Федерации и Объединенного института ядерных исследований в области проводимых научно-технических и инновационных исследований в соответствии со статьей 30 Соглашения между Правительством Российской Федерации и Объединенным институтом ядерных исследований о местопребывании и об условиях деятельности Объединенного института ядерных исследований в Российской Федерации от 23 октября 1995 года,

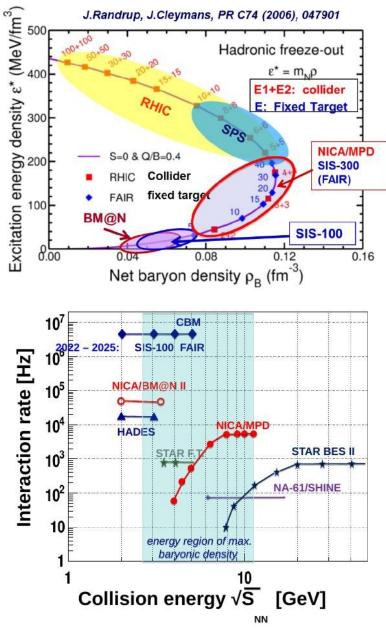
стремясь создать комплекс сверхпроводящих колец на встречных пучках тяжелых ионов NICA (Nuclotron-based Ion Collider fAcility), обладающий беспрецедентными параметрами в области исследования физики частиц и ядер высоких энергий и обеспечивающий возможность его применения для инновационных разработок в приоритетных областях научных знаний, техники и технологий,


согласились о нижеследующем:

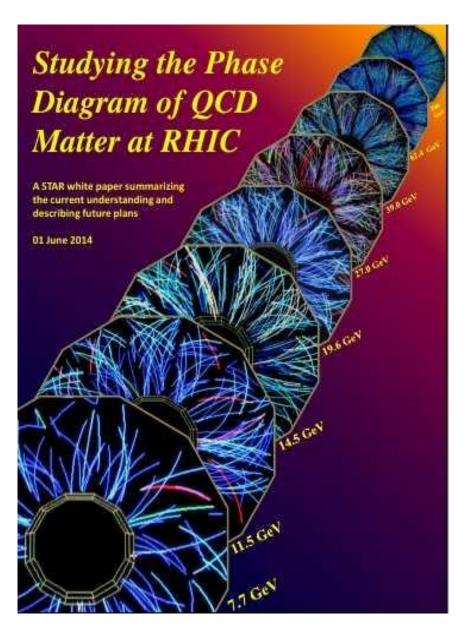
#### Статья 1

Настоящее Соглашение, заключаемое с целью формирования правовой основы, позволяет Сторонам путем объединения своих материальнотехнических и финансовых ресурсов вносить вклад в создание и эксплуатацию международного мега-сайенс проекта комплекса сверхпроводящих колец на встречных пучках тяжелых ионов NICA (далее комплекс NICA). который предусматривает создание ускорительного комплекса для получения пучков тяжелых ИОНОВ и

#### Nuclotron based Ion Collider fAcility







### **NICA advantagies**

J. Cleymans MPD collaboration Meeting April, 2018

- ✓ Maximum in K<sup>+</sup>/ $\pi$ <sup>+</sup> ratio is in the NICA energy region,
- Maximum in  $\Lambda/\pi$  ratio is in the NICA energy region,
- Maximum in the net baryon density is in the NICA energy region,
- Transition from a baryon dominated system to a meson dominated one happens in the NICA energy region.



# Studying the Phase Diagram of QCD Matter at RHIC



#### Contents

| Rev                      | iew of BES-I Results and Theory Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1                      | Region of the Phase Diagram Accessed in BES-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.2                      | Search for the Critical Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.3                      | Search for the First-order Phase Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | 2.3.1 Directed Flow (v1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | 2.3.2 Average Transverse Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.4                      | Search for the Threshold of QGP Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | 2.4.1 Elliptic Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | 2.4.2 Nuclear Modification Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | 2.4.3 Dynamical Charge Correlations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | 2.4.4 Chiral Transition and Dileptons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5                      | Summary of BES-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | posal for BES Phase-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.1                      | Physics Objectives and Specific Observables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.1                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5 \text{ GeV}/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.1                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5 \text{ GeV}/c$ ]         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles]                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.1                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles         3.1.3       Three-particle correlators related to CME/LPV                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.1                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5 \text{ GeV}/c$ 3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles]         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity                                                                                                                                                                                                                                                                                                                 |
| 3.1                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles].         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations                                                                                                                                                                                                                                                                   |
| 3.1                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles]         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons                                                                                                                                                                                                      |
|                          | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles]         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons         3.1.7       Dilepton production                                                                                                                                                              |
| 3.2                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles]         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons         3.1.7       Dilepton production         Beam request                                                                                                                                         |
| 3.2                      | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons         3.1.7       Dilepton production         Beam request       The Fixed-Target Program                                                                                                           |
| 3.2<br>3.3<br>3.4        | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons         3.1.7       Dilepton production         Beam request       The Fixed-Target Program         The Importance of $p+p$ and $p+A$ Systems                                                         |
| 3.2<br>3.3<br>3.4<br>3.5 | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons         3.1.7       Dilepton production         Beam request                                                                                                                                          |
| 3.2<br>3.3<br>3.4        | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles]         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons         3.1.7       Dilepton production         Beam request       The Fixed-Target Program         The Importance of $p+p$ and $p+A$ Systems         Collider Performance         Detector Upgrades |
| 3.2<br>3.3<br>3.4<br>3.5 | 3.1.1 $R_{CP}$ of identified hadrons up to $p_T = 5$ GeV/c         3.1.2       The $v_2$ of $\phi$ mesons and NCQ scaling for indentified particles         3.1.3       Three-particle correlators related to CME/LPV         3.1.4       The centrality dependence of the slope of $v_1(y)$ around midrapidity         3.1.5       Proton-pair correlations         3.1.6       Improved $\kappa\sigma^2$ for net-protons         3.1.7       Dilepton production         Beam request                                                                                                                                          |

4 Summary

50

### **STAR BES QGP** signatures

The particular observables that STAR has identified as the essential drivers of our run plan are:

- (A-1) Constituent-quark-number scaling of  $v_{2}$ , indicating partonic degrees of freedom;
- (A-2) Hadron suppression in central collisions as characterized by the ratio  $R_{_{\rm CP}}$ ;
- (A-3) Untriggered pair correlations in the space of pair separation in azimuth and pseudorapidity, which elucidate the ridge phenomenon;
- (A-4) Local parity violation in strong interactions, an emerging and important RHIC discovery in its own right, is generally believed to require deconfinement, and thus also is expected to turn-off at lower energies.

A search for signatures of a phase transition and a critical point. The particular observables that we have identified as the essential drivers of our run plan are:

- (B-1) Elliptic & directed flow for charged particles and for identified protons and pions, which have been identified by many theorists as highly promising indicators of a "softest point" in the nuclear equation of state;
- (B-2) Azimuthally-sensitive femtoscopy, which adds to the standard HBT observables by allowing the tilt angle of the ellipsoid-like particle source in coordinate space to be measured; these measurements hold promise for identifying a softest point, and complements the momentumspace information revealed by flow measurements, and
- (B-3) Fluctuation measures, indicated by large jumps in the baryon, charge and strangeness susceptibilities, as a function of system temperature – the most obvious expected manifestation of critical phenomena.

### **RHIC BES II program**

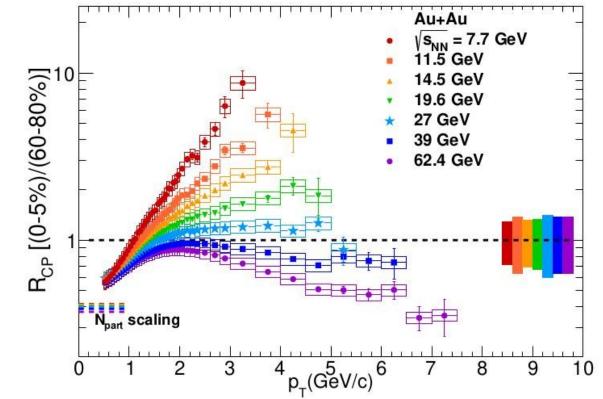
| Run                                                 | species                                                             | total particle<br>energy<br>[GeV/nucleon] | calendar<br>time in<br>physics | total<br>delivered<br>luminosity | average store<br>polarization,<br>(H-jet) <sup>2</sup> |
|-----------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------------|
| <u>Run-18</u>                                       | <sup>96</sup> Zr <sup>40+</sup> + <sup>96</sup> Zr <sup>40+</sup>   | 100.0                                     | 28.5 days                      | 3.9 nb <sup>-1</sup>             | -                                                      |
| (2017/18, FY2018<br>.0 cryo-weeks                   | <sup>96</sup> Ru <sup>44+</sup> + <sup>96</sup> Ru <sup>44+</sup>   | 100.0                                     | 28.5 days                      | 4.00 nb <sup>-1</sup>            | -                                                      |
|                                                     | 197 <sub>Au</sub> <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 13.5                                      | 24.0 days                      | 282 µb <sup>-1</sup>             |                                                        |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 3.85                                      | 4.6 days                       | 63 µb <sup>-1</sup>              | _                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 26.5                                      | 7.7 days                       | 33 µb <sup>-1</sup>              | -                                                      |
| <u>n-19</u>                                         | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 9.8                                       | 36 days                        | 151 µb <sup>-1</sup>             | -                                                      |
| 2018/19, FY2019<br>) cryo-weeks                     | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 7.3                                       | 60 days                        | 132 µb <sup>-1</sup>             | -                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 7.3                                       | 11 hours                       | 11 µb <sup>-1</sup>              | -                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 3.85                                      | 24 days                        | 3.6 µb <sup>-1</sup>             |                                                        |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 3.85                                      | 2 hours                        | 1.1 μb <sup>-1</sup>             |                                                        |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 4.59                                      | 2 days                         | 42 μb <sup>-1</sup>              | -                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 4.59                                      | 6 days                         | 7.0 µb <sup>-1</sup>             |                                                        |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 31.2                                      | 13 hours                       | 11 µb <sup>-1</sup>              | _                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 100.0                                     | 1.5 days                       | 80 μb <sup>-1</sup>              | -                                                      |
| <u>n-20</u>                                         | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 5.75                                      | 62 days                        | 143 µb <sup>-1</sup>             |                                                        |
| 2019/20, FY2020<br>Fcryo-weeks                      | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 4.59                                      | 117 days                       | 176 µb <sup>-1</sup>             | -                                                      |
| A weeks with cold<br>hine but no operation          | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 31.2                                      | 1.1 days                       | 23 µb <sup>-1</sup>              | _                                                      |
| to COVID-19                                         | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 19.5                                      | 1.4 days                       | 23 µb <sup>-1</sup>              | <u></u>                                                |
|                                                     | $^{197}\text{Au}^{79+}$ + fixed target $^{197}\text{Au}$            | 13.5                                      | 1.0 days                       | 25 μb <sup>-1</sup>              | _                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 9.8                                       | 0.9 days                       | 21 μb <sup>-1</sup>              |                                                        |
|                                                     | $^{197}$ Au <sup>79+</sup> + fixed target <sup>197</sup> Au         | 7.3                                       | 1.1 days                       | 24 μb <sup>-1</sup>              | <u> </u>                                               |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 5.75                                      | 0.9 days                       | 24 μb <sup>-1</sup>              | 200                                                    |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 26.5                                      | 1.9 days                       | 65 µb <sup>-1</sup>              |                                                        |
| n-21                                                | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 3.85                                      | 12.1 weeks                     | 152 µb <sup>-1</sup>             | -                                                      |
| 020/21, FY2021<br>cryo-weeks                        | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 3.85                                      | 22 days                        | 431 µb <sup>-1</sup>             | _                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 44.5                                      | 1 day                          | 10 µb <sup>-1</sup>              | -                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 70                                        | 1 day                          | 10 µb <sup>-1</sup>              | ·                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 100                                       | 1 day                          | 11 µb <sup>-1</sup>              | -                                                      |
|                                                     | <sup>16</sup> O <sup>8+</sup> + <sup>16</sup> O <sup>8+</sup>       | 100                                       | 14 days                        | 32 nb <sup>-1</sup>              | -                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + <sup>197</sup> Au <sup>79+</sup> | 8.65                                      | 11 days                        | 83 μb <sup>-1</sup>              | -                                                      |
|                                                     | <sup>197</sup> Au <sup>79+</sup> + fixed target <sup>197</sup> Au   | 26.5                                      | 1 day                          | 18 µb <sup>-1</sup>              | -                                                      |
|                                                     | d + <sup>197</sup> Au <sup>79+</sup>                                | 100.7 + 100.0                             | 4 days                         | 1.25 nb <sup>-1</sup>            | -                                                      |
| n-22<br>2021/22, FY2022<br>) cryo-weeks             | polarized p + p                                                     | 254.2                                     | 16.9 weeks                     | 807 pb <sup>-1</sup>             | 50%                                                    |
| n-23<br>002/23, FY2023<br>20.0 cryo-weeks (planned) | $^{197}Au^{79+} + {}^{197}Au^{79+}$                                 | 100.0                                     | 10.6 weeks                     | 5.7 nb <sup>-1</sup>             | 177                                                    |

### STAR data BES II program

| √s <sub>NN</sub> (GeV) | Beam Energy<br>(GeV/nucleon) | Collider or<br>Fixed Target | Ycenter of mass | µв<br>(MeV) | Run Time<br>(days)      | No. Events Collected (Request) | Date Collected |
|------------------------|------------------------------|-----------------------------|-----------------|-------------|-------------------------|--------------------------------|----------------|
| 200                    | 100                          | С                           | 0               | 25          | 2.0                     | 138 M (140 M)                  | Run-19         |
| 27                     | 13.5                         | С                           | 0               | 156         | 24                      | 555 M (700 M)                  | Run-18         |
| 19.6                   | 9.8                          | С                           | 0               | 206         | 36                      | 582 M (400 M)                  | Run-19         |
| 17.3                   | 8.65                         | С                           | 0               | 230         | 14                      | 256 M (250 M)                  | Run-21         |
| 14.6                   | 7.3                          | С                           | 0               | 262         | 60                      | 324 M (310 M)                  | Run-19         |
| 13.7                   | 100                          | FXT                         | 2.69            | 276         | 0.5                     | 52 M (50 M)                    | Run-21         |
| 11.5                   | 5.75                         | С                           | 0               | 316         | 54                      | 235 M (230 M)                  | Run-20         |
| 11.5                   | 70                           | FXT                         | 2.51            | 316         | 0.5                     | 50 M (50 M)                    | Run-21         |
| 9.2                    | 4.59                         | С                           | 0               | 372         | 102                     | 162 M (160 M)                  | Run-20+20b     |
| 9.2                    | 44.5                         | FXT                         | 2.28            | 372         | 0.5                     | 50 M (50 M)                    | Run-21         |
| 7.7                    | 3.85                         | С                           | 0               | 420         | 90                      | 100 M (100 M)                  | Run-21         |
| 7.7                    | 31.2                         | FXT                         | 2.10            | 420         | 0.5+1.0+<br>scattered   | 50 M + 112 M + 100 M (100 M)   | Run-19+20+21   |
| 7.2                    | 26.5                         | FXT                         | 2.02            | 443         | 2+Parasitic<br>with CEC | 155 M + 317 M                  | Run-18+20      |
| 6.2                    | 19.5                         | FXT                         | 1.87            | 487         | 1.4                     | 118 M (100 M)                  | Run-20         |
| 5.2                    | 13.5                         | FXT                         | 1.68            | 541         | 1.0                     | 103 M (100 M)                  | Run-20         |
| 4.5                    | 9.8                          | FXT                         | 1.52            | 589         | 0.9                     | 108 M (100 M)                  | Run-20         |
| 3.9                    | 7.3                          | FXT                         | 1.37            | 633         | 1.1                     | 117 M (100 M)                  | Run-20         |
| 3.5                    | 5.75                         | FXT                         | 1.25            | 666         | 0.9                     | 116 M (100 M)                  | Run-20         |
| 3.2                    | 4.59                         | FXT                         | 1.13            | 699         | 2.0                     | 200 M (200 M)                  | Run-19         |
| 3.0                    | 3.85                         | FXT                         | 1.05            | 721         | 4.6                     | 259 M -> 2B(100 M -> 2B)       | Run-18+21      |

### **STAR publications for BES II**

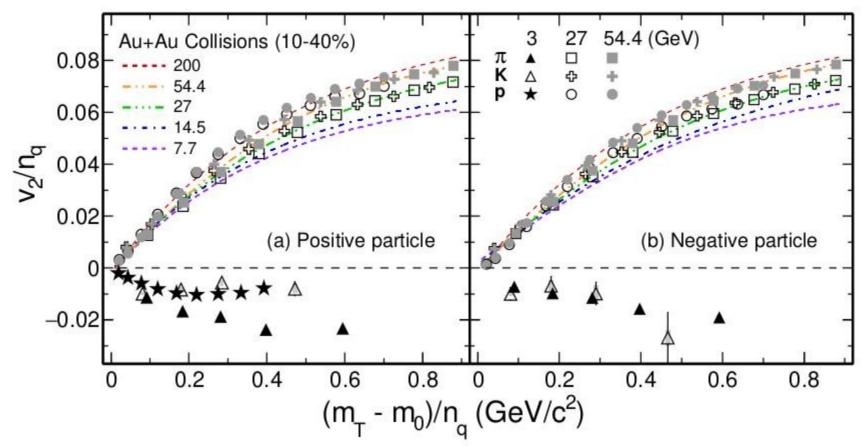
- First Observation of Directed Flow of Hypernuclei H3L and H4L in sqrt(sNN) = 3 GeV Au+Au Collisions at RHIC Phys. Rev. Lett. 130 (2023) 212301
- Higher-order cumulants and correlation functions of proton multiplicity distributions in sqrt{sNN} = 3 GeV Au + Au collisions at the RHIC STAR experiment Phys. Rev. C 107 (2023) 24908
- Probing Strangeness Canonical Ensemble with K-, phi(1020) and Xi- Production in Au+Au Collisions at sqrt{s\_NN} = 3 GeV Phys. Lett. B 831 (2022) 137152
- Light Nuclei Collectivity from 3 GeV Au+Au Collisions at RHIC Phys. Lett. B 827 (2022) 136941
- Measurements of Proton High Order Cumulants in sqrt{s\_NN} = 3 GeV Au+Au Collisions and Implications for the QCD Critical Point Phys. Rev. Lett. 128 (2022) 202303
- Disappearance of partonic collectivity in 3 GeV Au+Au collisions at RHIC Phys. Lett. B 827 (2022) 137003


### **STAR publication at 7.7 GeV**

- K0 production in Au+Au collisions at sqrt{sNN} = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan
   Phys. Rev. C 107 (2023) 34907
- Strange hadron production in Au+Au collisions at sqrt(sNN) = 7.7, 11.5, 19.6, 27, and 39 GeV Phys. Rev. C 102 (2020) 34909
- Measurement of elliptic flow of light nuclei at sqrt(sNN)= 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at RHIC Phys. Rev. C 94 (2016) 34908
- Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at sqrt(sNN)= 7.7-62.4 GeV Phys. Rev. C 93 (2016) 14907
- Energy Dependence of K-pi, p-pi, and K-p Fluctuations in Au+Au Collisions from sqrt(sNN) = 7.7 to 200 GeV Phys. Rev. C 92 (2015) 21901
- Elliptic flow of identified hadrons in Au+Au collisions at  $\sum_{s_{NN}} = 7.7-62.4 \text{ GeV}$ Phys. Rev. C 88 (2013) 14902
- Inclusive charged hadron elliptic flow in Au + Au collisions at  $\operatorname{S}_{NN} = 7.7 39 \text{ GeV}$ Phys. Rev. C 86 (2012) 54908

### **STAR publication at 11.5 GeV**

- K0 production in Au+Au collisions at sqrt{sNN} = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan
   Phys. Rev. C 107 (2023) 34907
- Strange hadron production in Au+Au collisions at sqrt(sNN) = 7.7, 11.5, 19.6, 27, and 39 GeV Phys. Rev. C 102 (2020) 34909
- Beam Energy Dependence of Jet-Quenching Effects in Au+Au Collisions at sqrt(sNN) = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV Phys. Rev. Lett. 121 (2018) 32301
- Measurement of elliptic flow of light nuclei at sqrt(sNN)= 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at RHIC
   Phys. Rev. C 94 (2016) 34908


### **STAR BES II studies**



Charged hadron R  $_{\rm CP}$  for RHIC BES energies. The uncertainty bands at unity on the right side of the plot correspond to the p  $_{\rm T}$  independent uncertainty in N coll scaling with the color in the band corresponding to the color of the data points for that energy. The vertical uncertainty bars correspond to statistical uncertainties and the boxes to systematic uncertainties.

Phys. Rev. C 102 (2020) 34909 Phys. Rev. Lett. 121 (2018) 32301

#### **STAR BES II studies**



v<sub>2</sub> scaled by the number of constituent quarks, v<sub>2</sub>/n<sub>q</sub>, as a function of scaled transverse kinetic energy for pions, kaons and protons from Au+Au collisions in 10-40% centrality at  $\sqrt{s_{_{NN}}} = 3$ , 27, and 54.4 GeV for positive charged particles and negative charged particles (right panel). The measurements are in the rapidity range |y| < 0.5 at 27 and 54.4 GeV, and in -0.5 < y < 0 at 3 GeV. Colored dashed lines represent the scaling fit to data from Au+Au collisions at 7.7, 14.5, 27, 54.4, and 200 GeV from STAR experiment at RHIC.

### **NICA White Paper**

ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2016. Т. 47. ВЫП. 4



Topical Issue on Exploring Strongly Interacting Matter at High Densities - NICA White Paper edited by David Blaschke, Jörg Aichelin, Elena Bratkovskaya, Volker Friese, Marek Gazdzicki, Jørgen Randrup, Oleg Rogachevsky, Oleg Teryaev, Viacheslav Toneev



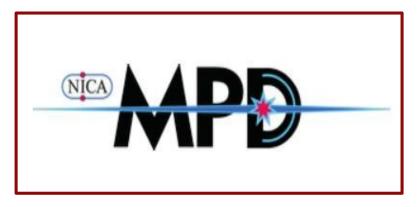
#### FEASIBILITY STUDY OF HEAVY ION PHYSICS PROGRAM AT NICA

P. N. Batyuk<sup>1,\*</sup>, V. D. Kekelidze<sup>1</sup>, V. I. Kolesnikov<sup>1</sup>, O. V. Rogachevsky<sup>1</sup>, A. S. Sorin<sup>1,2</sup>, V. V. Voronyuk<sup>1</sup> on behalf of the BM@N and MPD collaborations

<sup>1</sup> Joint Institute for Nuclear Research, Dubna <sup>2</sup> National Research Nuclear University "Moscow Engineering Physics Institute" (MEPhI), Moscow

There is strong experimental and theoretical evidence that in collisions of heavy ions at relativistic energies the nuclear matter undergoes a phase transition to the deconfined state — Quark–Gluon Plasma. The caused energy region of such a transition was not found at high energy at SPS and RHIC, and search for this energy is shifted to lower energies, which will be covered by the future NICA (Dubna), FAIR (Darmstadt) facilities and BES II at RHIC. Fixed target and collider experiments at the NICA facility will work in the energy range from a few AGeV up to  $\sqrt{s_{NN}} = 11$  GeV and will study the most interesting area on the nuclear matter phase diagram.

The most remarkable results were observed in the study of collective phenomena occurring in the early stage of nuclear collisions. Investigation of the collective flow will provide information on Equation of State (EoS) for nuclear matter. Study of the event-byevent fluctuations and correlations can give us signals of critical behavior of the system. Femtoscopy analysis provides the space-time history of the collisions. Also, it was found that baryon stopping power revealing itself as a "wiggle" in the excitation function of curvature of the (net) proton rapidity spectrum relates to the order of the phase transition.


The available observations of an enhancement of dilepton rates at low invariant masses may serve as a signal of the chiral symmetry restoration in hot and dense matter. Due to this fact, measurements of the dilepton spectra are considered to be an important part of the NICA physics program. The study of strange particles and hypernuclei production gives additional information on the EoS and "strange" axis of the QCD phase diagram.

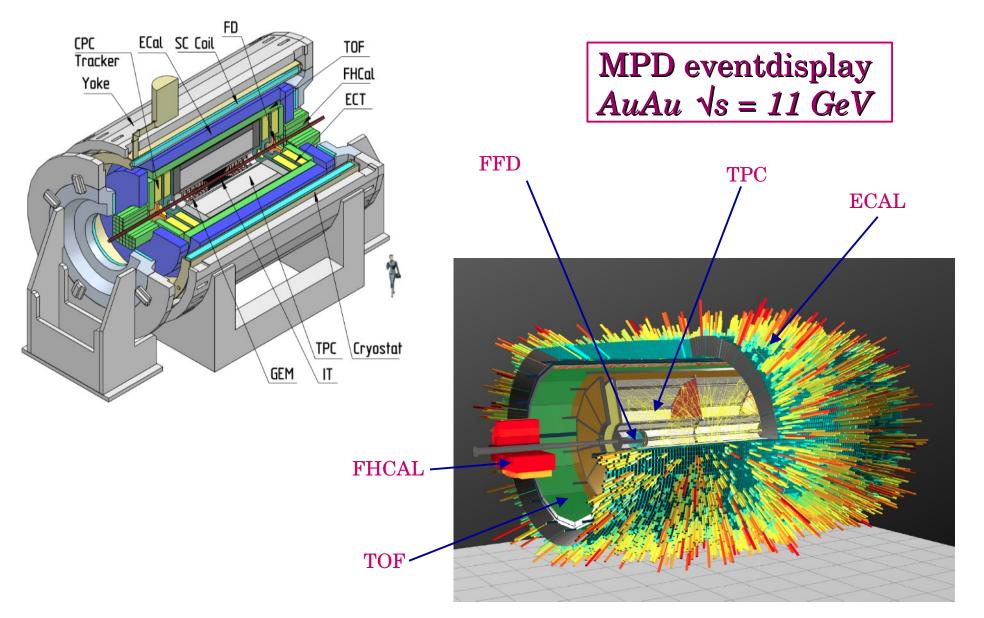
In this paper a feasibility of the considered investigations is shown by the detailed Monte Carlo simulations applied to the planned experiments (BM@N, MPD) at NICA.

| INTRODUCTION                               | 1005 |
|--------------------------------------------|------|
| PHYSICS STUDIES FOR THE MPD                | 1011 |
| PHYSICS STUDIES AT THE NUCLOTORON ENERGIES | 1041 |
| THE NICA WHITE PAPER PROPOSALS             | 1044 |
| SUMMARY                                    | 1046 |
| REFERENCES                                 | 1046 |

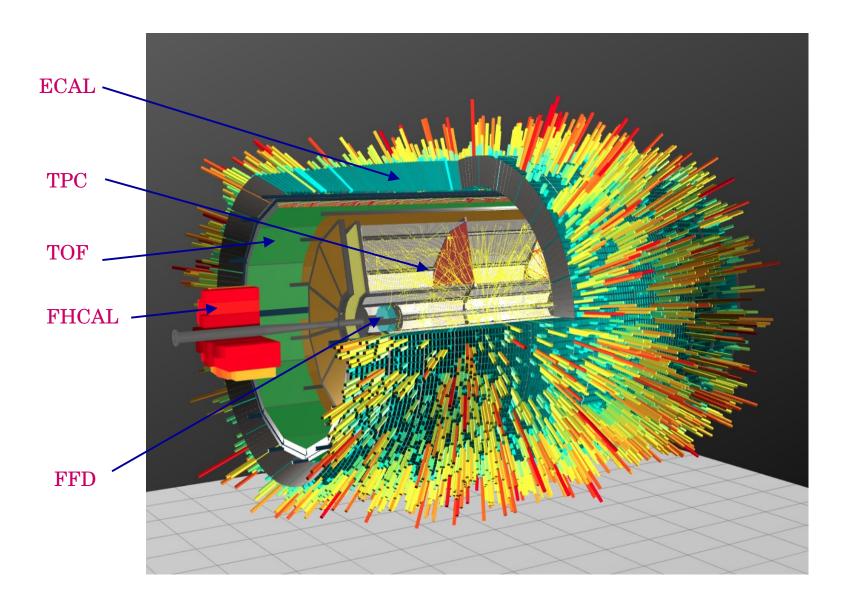
### NICA 2018: collaborations

33 institutes > 450 participants




10 institutes ~ 189 participants

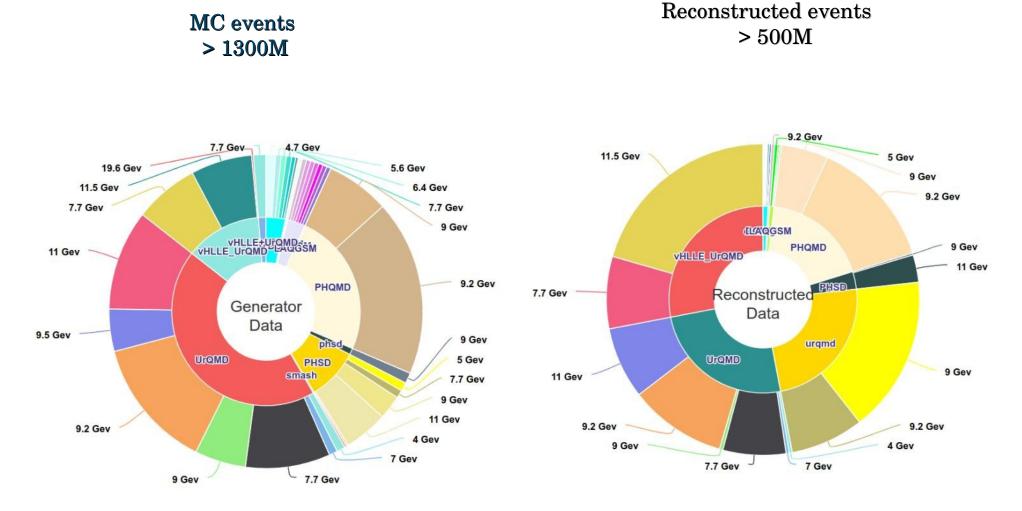



30 institutes



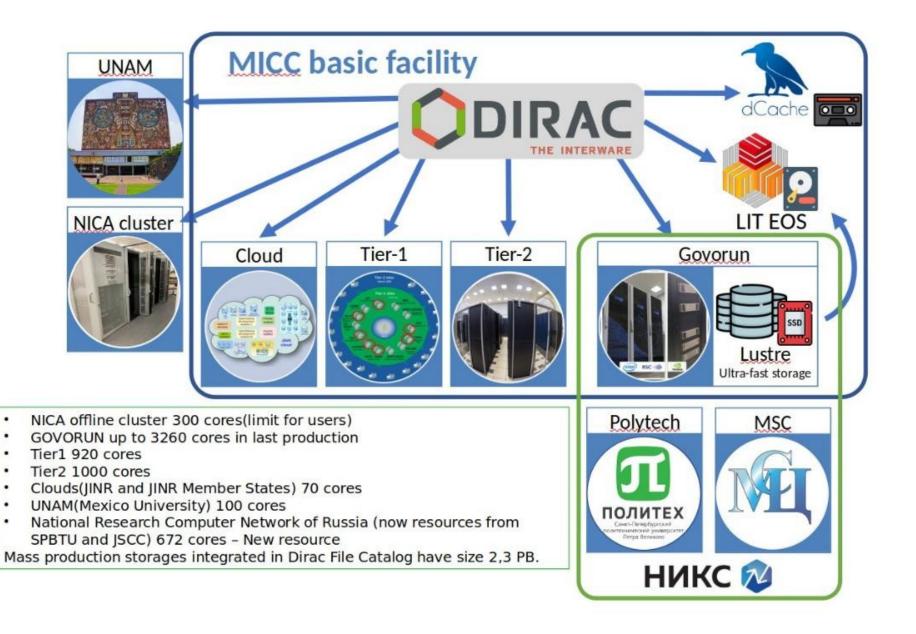
#### **MPD** experiment at NICA



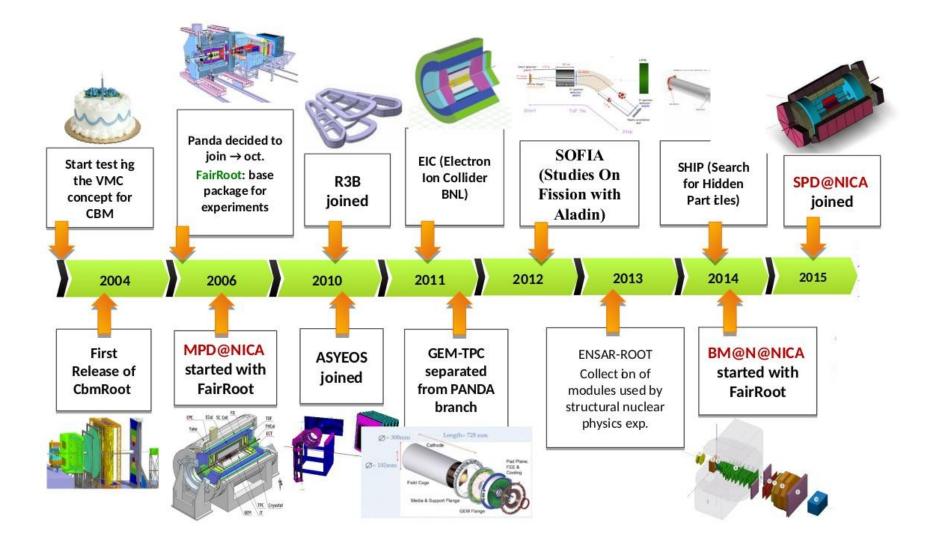

### MPD experiment 1-st stage



### MPD data mass production


| Generator    | PWG  | Coll. |                             | # of events() 10 <sup>6</sup> | Reco             |
|--------------|------|-------|-----------------------------|-------------------------------|------------------|
| UrQMD        | PWG4 | AuAu  | 11                          | 15                            | +                |
|              |      | ВіВі  | 9                           | 10                            | +                |
|              |      |       | 9.46                        | 10                            | +                |
|              |      |       | 9.2                         | 95                            | +                |
|              | PWG2 | AuAu  | 11                          | 10                            | +                |
|              | PWG3 | AuAu  | 7.7                         | 10                            | +                |
|              |      | ВіВі  | 7.7                         | 10                            | +                |
|              |      |       | 9                           | 15                            | +                |
|              |      | pp    | 9                           | 10                            | +                |
|              | PWG1 | віві  | 9.2                         | 11(50 underway)               | +                |
| DCM-SMM      | PWG1 | ВіВі  | 9.2                         | 1                             | +                |
| PHQMD        | PWG2 | віві  | 8.8                         | 15                            | +                |
|              |      |       | 9.2                         | 61                            | +                |
|              |      |       | 2.4/3.0/4.5                 | 10/10/2                       | -                |
| vHLLE-UrQMD  | PWG3 | віві  | 11.5                        | 15                            | +                |
|              |      | AuAu  | 11.5                        | 15                            | +                |
|              |      | AuAu  | 7.7                         | 20                            | +                |
| Smash        | PWG1 | віві  | 9.46                        | 10                            | +                |
|              |      | ArAr  | 4/7/9/11                    | 20/20/20/20                   | -                |
|              |      | AuAu  | 4/7/9/11                    | 20/20/20/22                   | -                |
|              |      | XeXe  | 4/7/9/11                    | 20/20/20/20                   | -                |
|              |      | сс    | 4/7/9/11                    | 20/20/20/20                   | -                |
|              |      | рр    | 4/7/9/11                    | 50/50/50                      | -                |
| JAM          | PWG3 | AuAu  | 3/3.3/3.5/3.8/4.0/4.2/4.5/5 | 40/40/40/40/40/40/40/40       |                  |
| DCM-QGSM-SMM | PWG3 | AuAu  | 4/9.2                       | 5/5                           | +                |
|              |      | AgAg  | 4/9.2                       | 5/5                           | +                |
|              |      | віві  | 4/9.2                       | 5/6                           | +                |
| PHSD         |      | BiBi  | 9/9.2                       | 25                            | +                |
| Total        |      |       |                             | 1233(50 underway)             | 389(50 underway) |

### **MPD data mass production**






### **Computing resources for MPD**



# Software frameworks for NICA experiments



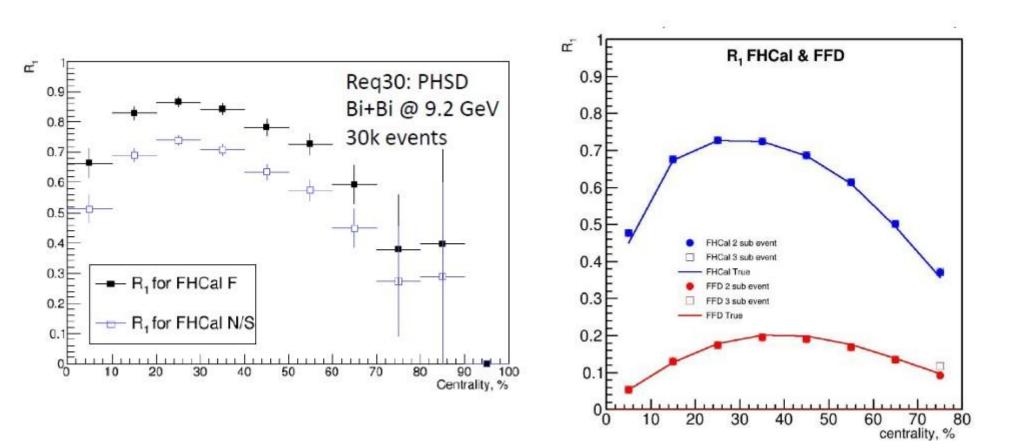


### **MPD** physics



| Global observables                                                                                                                     | Spectra of light flavor and<br>Hypernuclei                                                                   | Correlations and<br>Fluctuations                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Total event multiplicity</li> <li>Total event energy</li> <li>Centrality determination</li> <li>Total cross-section</li></ul> | <ul> <li>Light flavor spectra</li> <li>Hyperons and hypernuclei</li> <li>Total particle yields and</li></ul> | <ul> <li>Collective flow for hadrons</li> <li>Vorticity, Λ polarization</li> <li>E-by-E fluctuation of</li></ul> |
| measurement <li>Event plane measurement</li>                                                                                           | yield ratios <li>Kinematic and chemical</li>                                                                 | multiplicity, momentum                                                                                           |
| at all rapidities <li>Spectators measurement</li>                                                                                      | properties of the event <li>Mapping QCD Phase Diag.</li>                                                     | and conserved quantities <li>Femtoscopy</li> <li>Forward-Backward corr.</li> <li>Jet-like correlations</li>      |

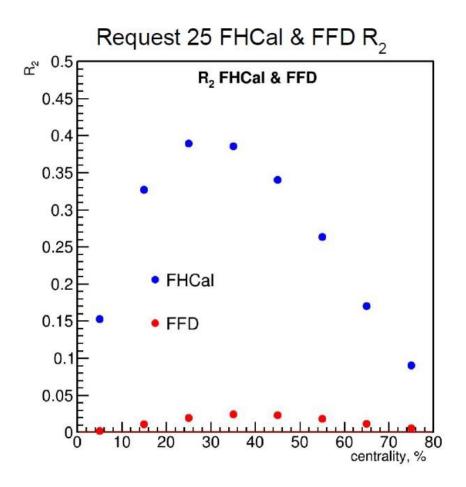
#### **Electromagnetic** probes

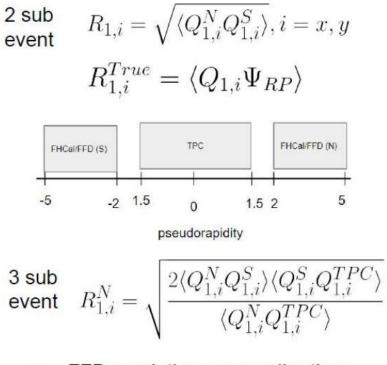

- Electromagnetic calorimeter meas.
- Photons in ECAL and central barrel
- Low mass dilepton spectra in-medium modification of resonances and intermediate mass region

#### Heavy flavor

- Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF particles
- Explore production at charm threshold



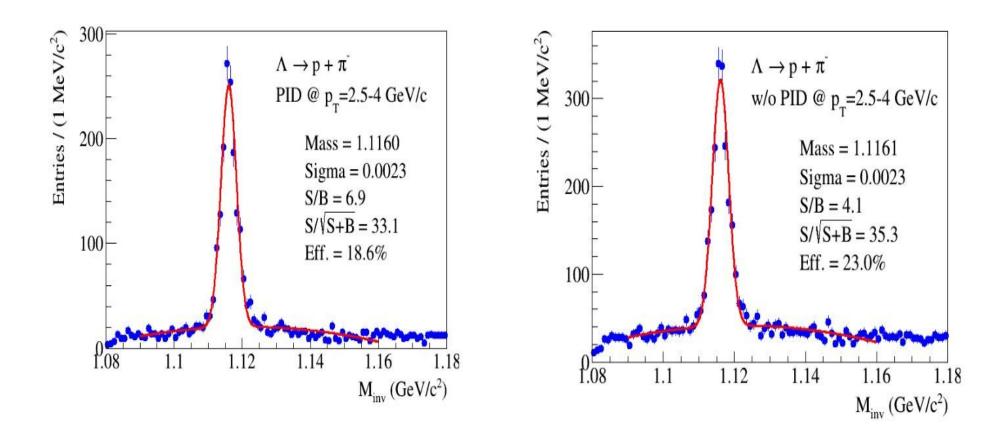

#### Event plane resolution






#### **MPD PW1 studies**

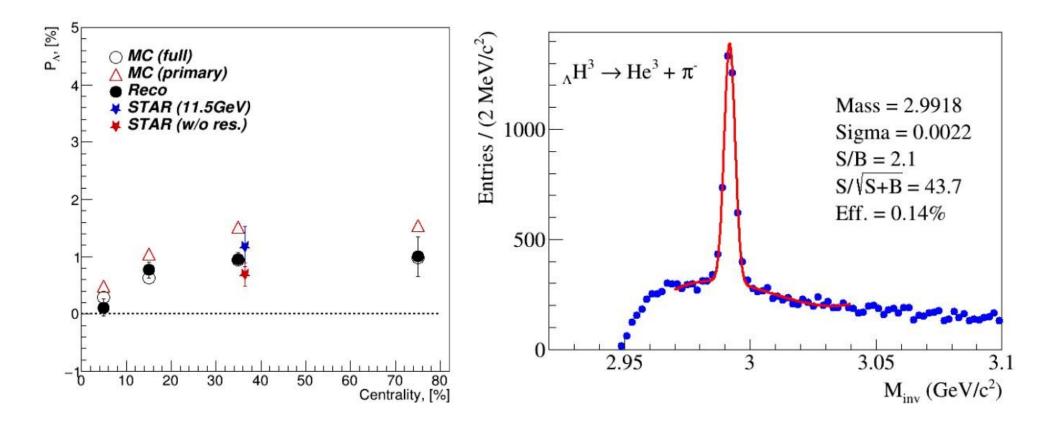
#### **Event plane resolution**





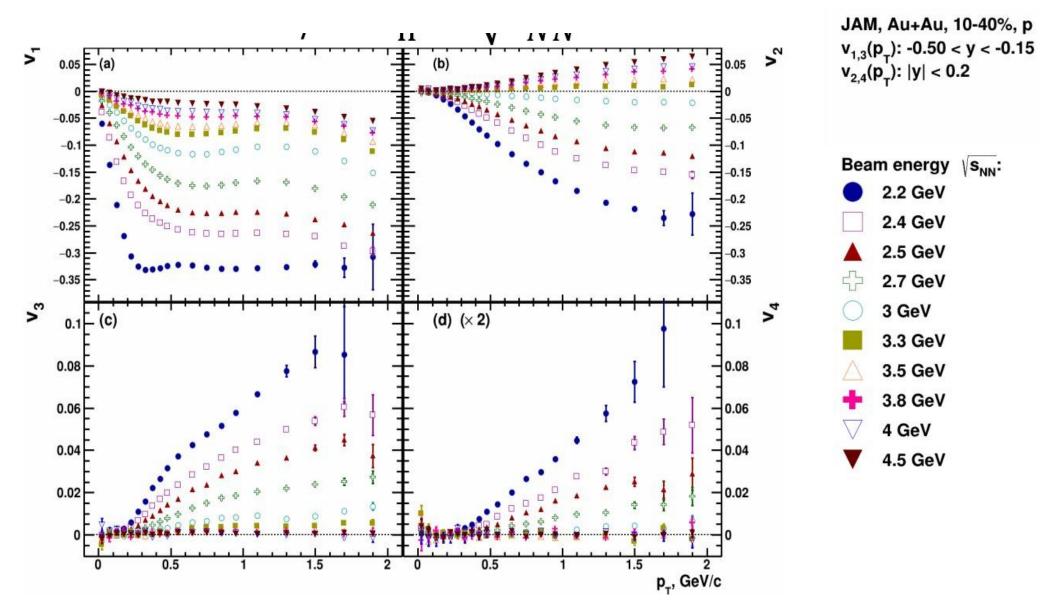

- FFD resolution are smaller than FHCal
- 2 and 3 sub event has good agreement with True Resolution

#### **MPD PW2 studies**


#### Hyperons in Bi+Bi at 9.2 GeV: no-PID mode at high $p_{\scriptscriptstyle \rm T}$

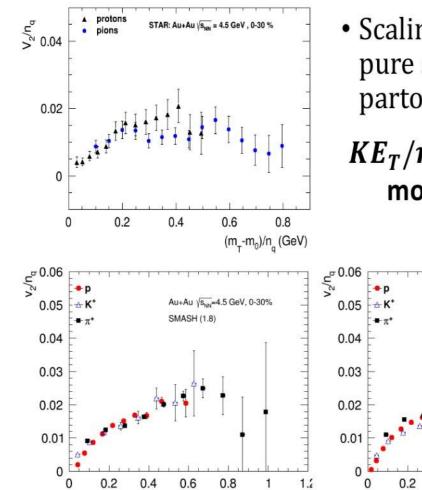


#### **MPD PW2 studies**


#### Global hyperon polarization at MPD

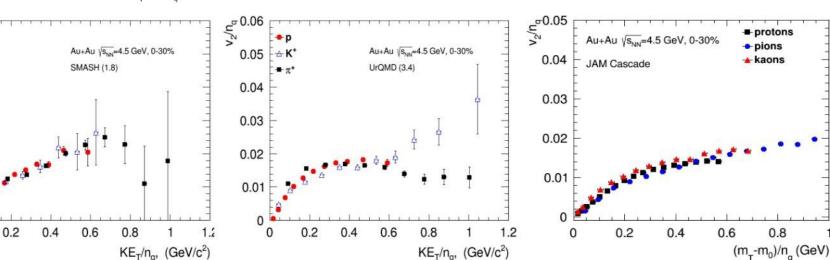
 $_{\Lambda}{}^{3}$  H reconstruction (2-prong)






#### **MPD PW3 studies**






### MPD PW3 studies



 Scaling holds up at 4.5 GeV in STAR data and pure string/hadronic cascade models (without partonic d.o.f.)

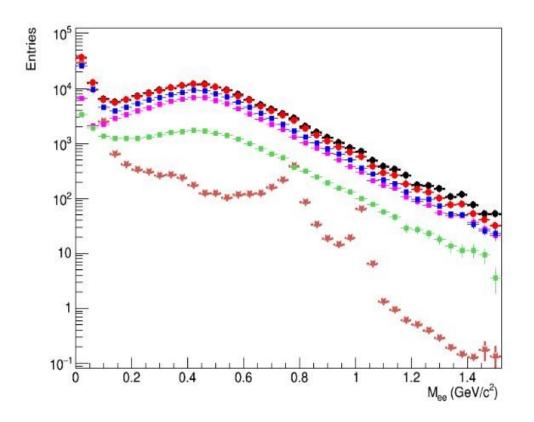
 $KE_T/n_q$  scaling at 4.5 GeV might be accidental – more careful studies should be performed



### MPD PW4 studies

#### electromagnetic probes

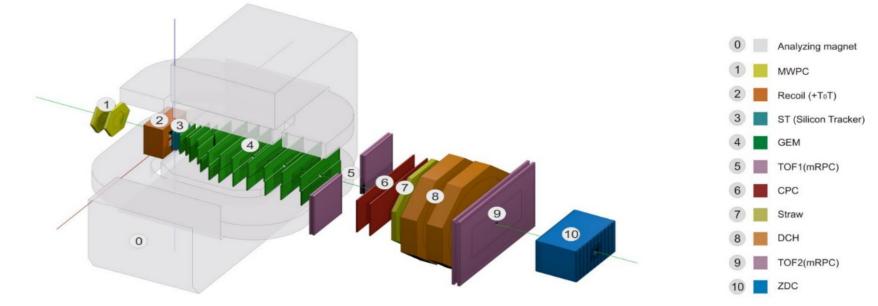
- ✓ electromagnetic calorimeter (ECAL) reconstruction software
- $\checkmark$  reconstruction of photons and neutral meson
- ✓ dielectron continuum and LVMs
- $\checkmark$  estimation of direct photon yields and flow

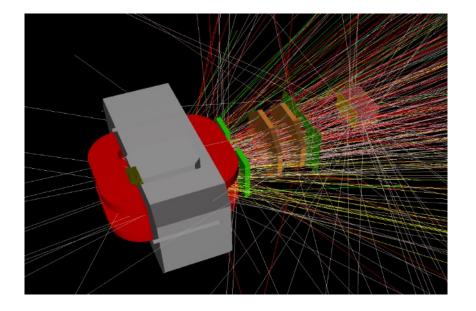

Analyses in the pipeline:

- $\checkmark \quad \pi^0/\eta \to \gamma\gamma, \, \pi^0/\eta \to \gamma(e^+e^-), \, \pi^0/\eta \to (e^+e^-)(e^+e^-)$
- $\checkmark \quad {\rm K}_{\rm s} \rightarrow \pi^0 \pi^0$
- $\checkmark \quad \omega \to \pi^0 \gamma, \, \omega / \eta \to \pi^0 \pi^+ \pi$
- $\checkmark \quad \eta' \to \eta \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$
- $\checkmark \quad \Sigma^0 \to \Lambda \gamma, \Sigma^0 \to \Lambda(e^+e^-), \Sigma^+ \to p\pi^0$
- $\checkmark$  inclusive and direct photons
- $\checkmark$  dielectron continuum and LVMs
- ✓ single  $e_{HF}$

### **MPD PW4 studies**




PWG4 scope - electromagnetic probes




Dielectron continuum (TPC-TOF eID) Dielectron continuum (perfect eID) Pairs with  $\pi^0$  Dalitz electron(s) Pairs with conversion electron(s) Pairs with  $\eta$  Dalitz electron(s) True e<sup>+</sup>e<sup>-</sup> signal to be measured

#### **BM@N experiment at NICA**

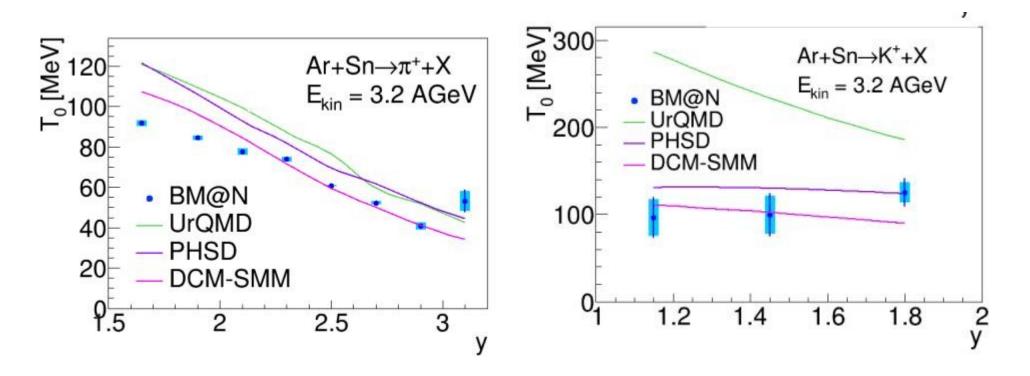
#### setup in experimental run with 3.2 AGeV Ar beam, 2018



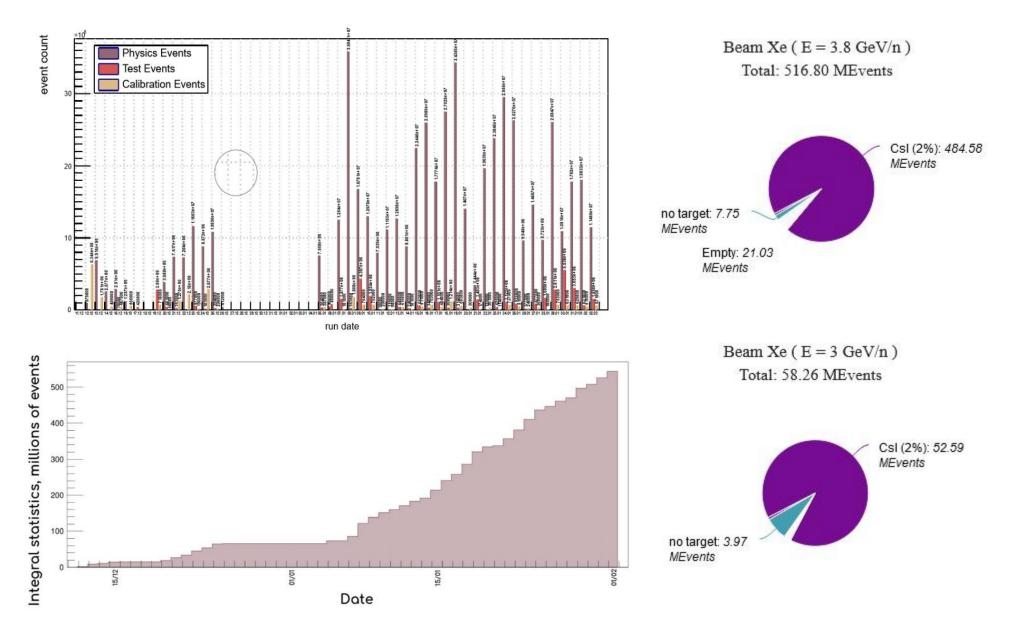


AuAu  $E_{beam} = 4 \text{ GeV}$ 

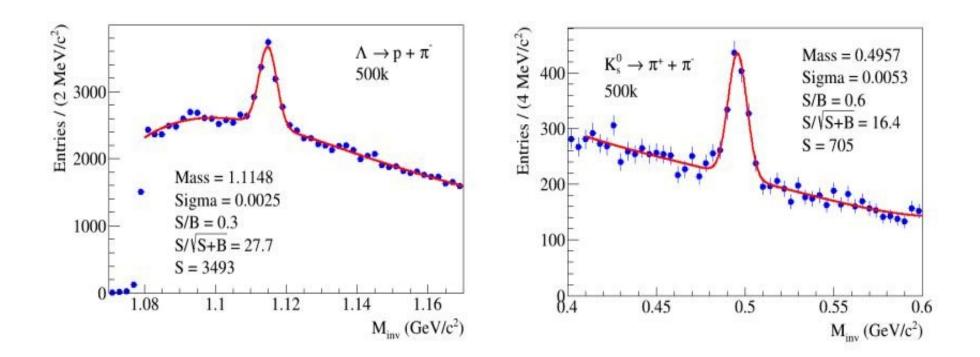
#### **BM@N experiment at NICA**





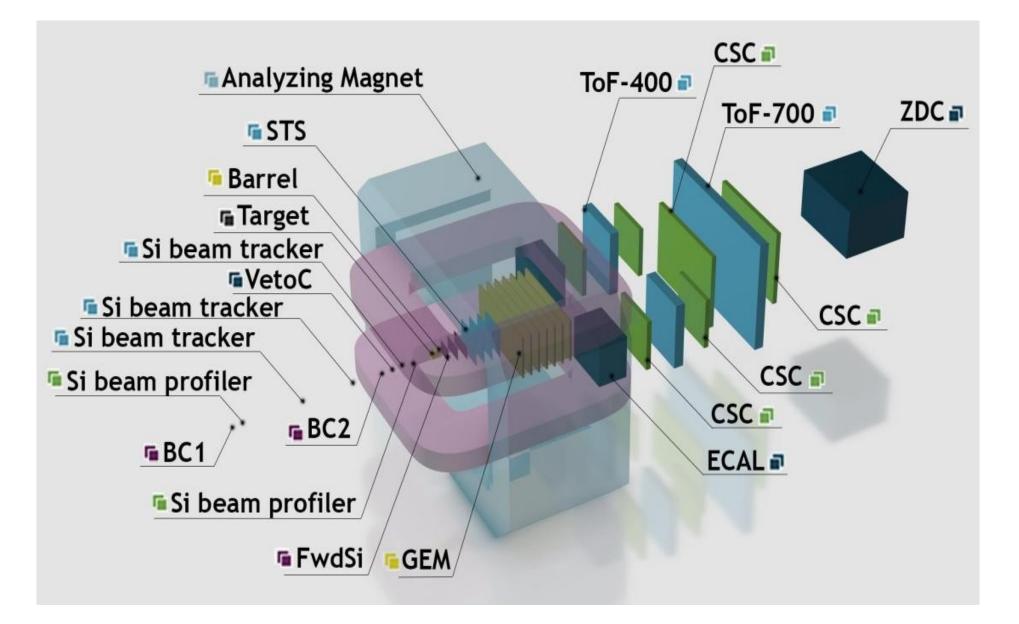




## $\pi^+$ and K<sup>+</sup> mesons at 3.2 AGeV argon-nucleus collisions


https://arxiv.org/abs/2303.16243v3



### BM@N data (2023 Xe + CsI runs)



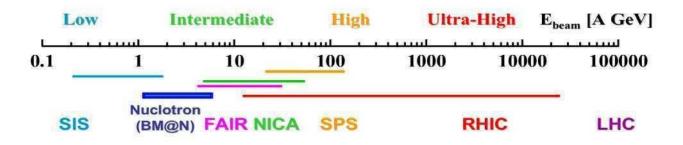

#### BM@N $\Lambda^0$ , $K_s^0$ reconstruction (2023 Xe + CsI runs)



reconstruction efficiency of 2%

### **BM@N experiment after 2025**

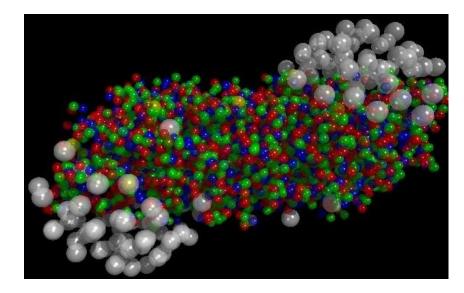



#### Thank you for attention



#### to NICA Relativistic Nuclear Physics

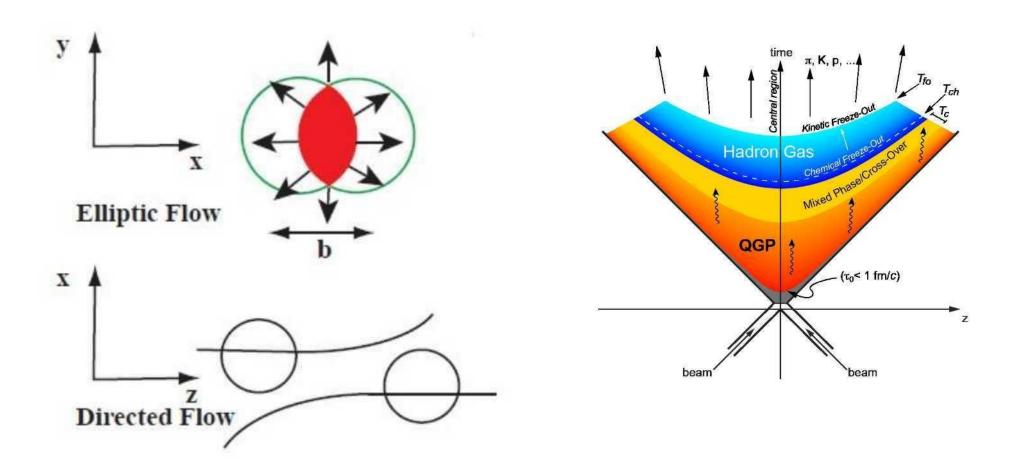
# **Resent & future experiments for HIC**


| Facility                      | SPS            | RHIC<br>BES II    | Nuclotron<br>M | NICA          | SIS/100<br>(300)      | J-PARK HI  |
|-------------------------------|----------------|-------------------|----------------|---------------|-----------------------|------------|
| Laboratory                    | CERN<br>Geneva | BNL<br>Brookhaven | JINR<br>Dubna  | JINR<br>Dubna | FAIR GSI<br>Darmstadt | J-PARK     |
| Experiment                    | NA61<br>SHINE  | STAR<br>PHENIX    | BM@N           | MPD           | HADES<br>CBM          | JHITS      |
| Start of<br>data taking       | 2011           | 2017              | 2015           | 2019          | 2020/25               | 2025       |
| √s <sub>NN</sub> <u>(GeV)</u> | 4.9 – 17.3     | 7.7 – 200         | < 3.5          | 4 - 11        | 2.7 – 8.2             | 2.0 - 6.2  |
| Physics                       | CP & OD        | CP & OD           | HDM            | OD &<br>HDM   | OD & CP               | OD&<br>HDM |



- CP critical point
- OD onset of deconfinement,mixed phase, 1<sup>st</sup> order phasetransition
- HDM hadrons in dense matter
- PDM properties of deconfined matter

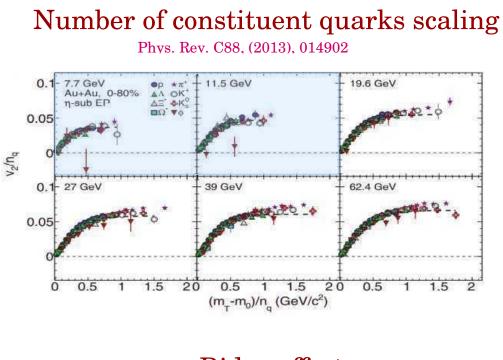
#### New State of Matter created at CERN


Geneva, 10 February 2000. At a special seminar on 10 February, spokespersons from the experiments on CERN1's Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.



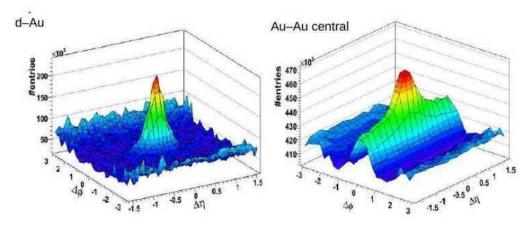
Professor Luciano Maiani, CERN Director General, said "The combined data coming from the seven experiments on CERN's Heavy Ion programme have given a clear picture of a new state of matter. This result verifies an important prediction of the present theory of fundamental forces between quarks. It is also an important step forward in the understanding of the early evolution of the universe. We now have evidence of a new state of matter where quarks and gluons are not confined. There is still an entirely new territory to be explored concerning the physical properties of quark-gluon matter. The challenge now passes to the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory and later to CERN's Large Hadron Collider."

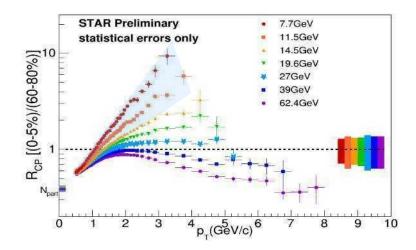
The lead beam programme started in 1994, after the CERN accelerators has been upgraded by a collaboration between CERN and institutes in the Czech Republic, France, India, Italy, Germany, Sweden and Switzerland. A new lead ion source was linked to pre-existing, interconnected accelerators, at CERN, the Proton Synchrotron (PS) and the SPS. The seven large experiments involved measured different aspects of lead-lead and lead-gold collisions. They were named NA44(link is external), NA45(link is external), NA49, NA50, NA52(link is external), WA97 / NA57and WA98. Some of these experiments use multipurpose detectors to measure and correlate several of the more abundant observable phenomena. Others are dedicated experiments to detect rare signatures with high statistics. This co-ordinated effort using several complementing experiments has proven very successful.


#### **QGP** in nucleus collisions

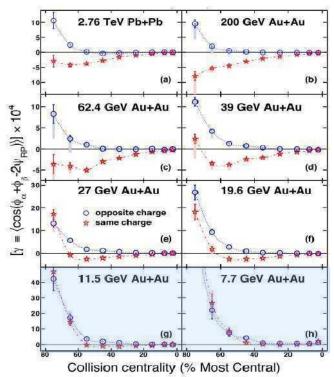


### **STAR BES I results**

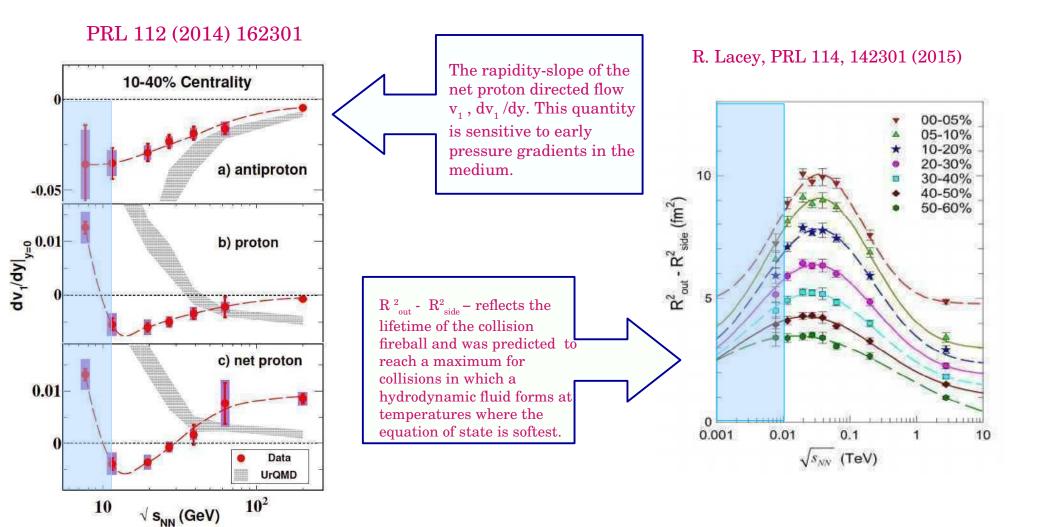

#### High $P_{T}$ suppression


Stephen Horvat Quark Matter 2015



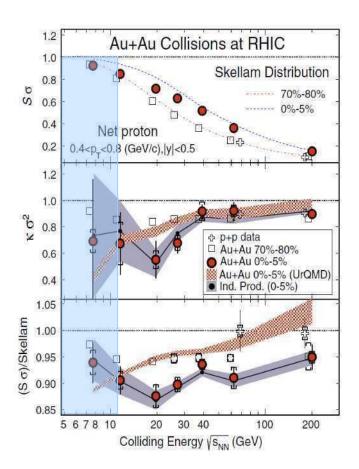

#### Ridge effect

B. Abelev et al., Phys. Rev. C80, 064912 (2009).






#### **Chiral Magnetic Effect**




### **STAR BES I results**



### **STAR BES I results**

#### STAR, PRL 112, 032302 (2014)



The kurtosis of the event-by-event distribution of the net proton (i.e. proton minus antiproton) number per unit of rapidity, normalized such that Poisson fluctuations give a value of 1.

In central collisions, published results in a limited kinematic range show a drop below the Poisson baseline around  $\sqrt{s_{_{N\,N}}}$  =27 and 19.6 GeV.

New preliminary data over a larger  $p_T$  range, although at present still with substantial error bars, hint that the normalized kurtosis may, in fact, rise above 1 at lower  $\sqrt{s_{_{NN}}}$ , as expected from critical fluctuations..

The grey band shows the much reduced uncertainties anticipated from BES-II in 2018-2019, for the 0-5% most central collisions.