Сравнение экспериментальных и расчётных результатов контроля температурных режимов работы электроники *ROC*-камеры детектора *TPC* для эксперимента *MPD*

Макаров Александр Анатольевич Глеб Владимирович Мещеряков ЛФВЭ

1. Введение

Основные задачи охлаждения и термостабилизации ТРС

- Ограничить поступления тепла от соседних детекторов и других источников тепла (ΔТтн~=25°): работающей электроники ТРС (310W/1 ROC-камеру)
- Термостабилизировать рабочую газ. смесь TPC Ar:CH4 (90:10) для стабилизации скорости дрейфа электронов в газовом объеме

Electric field (V/cm)

Процесс сборки *ROC*-камеры

Стационарное поле температуры на датчиках *SAMPA* в отсутствие системы охлаждения

Охлаждаемая часть (*ROC*-камера)

Контура Системы охлаждения электроники на одном торце *ТРС*

Г.В. Мещеряков А.А. Макаров

Возможность иметь разную *Т* хладагента на радиаторах электроники и корпусе камеры

2.Схема стенда

Тепловые имитаторы

электроники выполнены на

конструктиве рабочих плат.

основе SMD резисторов в

3. Схема расположения датчиков температуры

Г.В. Мещеряков А.А. Макаров

L7 10 3.8	17 30 38					STATISTICS.
RT 2.0 2.4 0.4	1.4 2.7 3.5	17 20 28				
AC 25.9 20.6 k1	1.5 2.0 0.4	15 79 17	17 30 38			
8 15 28 37	24.3 19.9 k2	20 24 04	1.6 2.9 3.6	17 30 38		
In 17 22 04	1.5 2.7 3.7	210 2.4 0.4	2.0 2.4 0.4	16 20 38	17 20 38	
ac 24.2 20.7 11	1.7 2.0 0.4		23.9 24.8 14	20 24 04	16 20 28	12 20 20
18 15 29 37	23.9 20.8 12	1.6 2.9 3.8	1.6 2.9 3.5	20 27 229 15	10 29 3.0	17 3.0 3.0
17 24 04	1.6 2.9 3.7	2.0 2.4 0.4	2.0 2.4 0.4	1012 20.3 10	20 24 0.4	1.6 2.9 3.8
ar 26.1 22.9 II	2.0 2.4 0.4	25.9 22.3 h3	24.9 24.4 14	1.6 2.9 3.8	2810 21.9 ge	2.0 2.4 0,4
in the last	24.4 23.9 12	1.6 2.8 3.7	1.6 2.9 3.6	2.0 2.4 0.4	1.6 2.9 3.8	27.9 22.2 17
10 1.5 2.9 3.7	1.5 2.8 3.7	2.0 2.2 0.4	2.0 2.4 0.4	24.8 26.9 93	2.0 2.4 0.4	1.6 2.9 3.7
ABT 1.7 2.4 0.4	17 2.2 0.4	24.1 21.9 93	23.9 22.2 199	1.6 2.9 3.8	27.9 25.9 16	2.0 2.4 0.4
A 1210 21.9 HI	24.0 19.9 h2	- 16 29 38	1.6 2.9 3.8	2.0 2.4 0.4	1.6 2.9 3.8	27.9 26.9 07
U,6 1.5 2.8 3.7	1,6 2.8 3.8	20 24 24	24.4 23.9 04	26.1 25.9 15	20 24 0.4	he he he
P,Br 1.7 2.2 0.4	2.0 2.2 0.4	261 199 1	0.0 0.0 0.0	1.6 2.9 3.8	24.4 ZZ.0 e6	1.0 2.0 4.0
T,°C 25.9 23.9 91	21.9 20.5 92	201 100 10	0.0 0.0 0.0	2.0 2.4 0.4	16 20 28	2.0 2.2 0.4
U,8 1.4 2.8 3.7	1.3 2.6 3.4	1.6 2.9 3.8	18.1 18.4 14	27.9 22.3 e5	1.0 2.7 5.0	24.3 22.9 d7
P,Bt 1.5 2.2 0.4	1.3 1.9 0.4	2.0 2.4 0.4	1.6 2.9 3.8	1.6 2.9 3.8	2.0 2.4 0.4	1.6 2.9 3.8
T,*C 21.9 21.9 f1	22.1 20.6 12	25.9 19.9 e3	2.0 2.4 0.4	2.0 2.4 0.4	255.9 255.9 06	2.0 2.4 0.4
U,B 1.4 2.9 3.7	1.6 2.9 3.8	1.5 2.9 3.7	26.8 21.9 e4	30.2 21.9 d5	1.5 2.8 3.7	25.9 21.9 c7
P,BT 1.5 2.4 0.4	2.0 2.4 0.4	1.7 2.4 0.4	1.6 2.9 3.8	1.6 2.9 3.8	1.7 2.2 0.4	In the Ine
T, 4C 23.9 24.5 el	21.9 19.9 62	25.9 19.9 d3	2.0 2.4 0.4	20 24 04	25.9 25.9 c6	1.6 2.9 3.0
U.B. 1.6 2.8 3.7	1.6 2.9 3.8	1.6 27 37	25.9 22.2 04	27.9 23.9 5	1.4 2.7 3.6	2.0 2.4 0.4
P.Br 2.0 2.2 0.4	2.0 2.4 0.4	20 20 04		10 120 120	15 2.0 0.4	12.2 28.6 b7
T,*C 20.9 20.8 d1	20.0 20.5 04	1 20 20 226 23	255.9 255.9 04	1.6 2.9 3.8	25.9 26.6 b6	1.5 2.8 3.7
U.B 1.5 2.8 3.7	1.6 2.9 3.8	44.7 44.10 4.1	1 15 29 138	20 24 0.4	12 22 26	17 22 0.4
P.Bt 1.7 2.2 0.4	20 2.9 0.9	1.5 2.8 3.7	2.0 2.4 0.4	20,1 227 03	1.3 2.7 0.0	26.3 24.1 07
I."C 24.6 19.9 cl	100 100 100	1.7 2.2 0.4	23.9 24.4 b4	1.5 2.8 3.7	1.3 2.0 0.4	A differ to sugar a distribution of the second second
UB 15 28 37	20 24 04	24.9 21.9 b3	1.6 2.9 3.8	1.7 2.2 0.4	23.9 23.0 40	
P.BT 11.7 2.7 0.4	20.8 21.9 6	1.6 2.8 3.7	2.0 2.4 0.4	25.9 21.9 a5		
T. C 25.9 21.9 b1	14 28 116	2.0 2.2 0.4	25.9 2 <u>3.9</u> a4			
UB 115 28 27	15 22 0.4	24.5 19.9 83				
20122 22 04	23.9 19.9 4	2				

8

Схема считывания температуры для 62 карт

имитаторов карт электроники.

Дополнительно контролировалась температура самих

	<i>T</i> water in chiller, C	T Al ROC chamber, C min- max	Delta <i>T</i> Al ROC	<i>T</i> Pad plain, C min- max	Dela <i>T</i> Pad, C
1	T1-17, T2=17	17.95-18.28	0.33	18.05-18.6	0.65
2	T1=23, T2=23	23.33-23.47	0.14	23.31-23.56	0.25
3	T1=28, T2=28	27.7-27.94	0.3	27.57-27.81	0.24

Aluminiul ROC chamber -4.1 -4.2 -4.3 -4.4 -4.5 4.6 -4.7 Delta T Al Poc = 0.30C -4.9 -4.11 T1= 28C T2=28C Tair= 23C 1000 2000 3000 4000 5000 6000 7000 8000 Time, sec

Г.В. Мещеряков А.А. Макаров

10

Измерения проводились при 2-х разных условиях для определения оптимума:

 охлаждение электроники водой с T =17ºC (T₂), охлаждение корпуса ROC камеры водой с T = 25ºC (T₁), T воздуха -~23ºC (<u>случай 1)</u>;

2) охлаждение электроники водой с T = 19 (T_2), охлаждение корпуса *ROC* камеры водой с T = 22 (T_1); T воздуха - ~23 (<u>случай 2)</u>.

4. Результаты измерений

4.1 Случай 1

охлаждение электроники водой с $T=17^{\circ}C(T_2)$, «охлаждение» корпуса *ROC* камеры водой с $T=25^{\circ}C(T_1)$. По возлуха -~23°C

T, sec

4.2 Случай 2

охлаждение электроники водой с T=19°C (T2), охлаждение корпуса ROC камеры водой с T=22°C (T1); Тср воздуха - ~23°C

4.3 Выводы

Точность измерений T⁰ ± 0.1C

N⁰	T1	T2	ΔΤ _{SAMPA}	ΔT _{FPGA}	ΔT _{PAD}	ΔT _{ROC}	∆Т _{панели}	T _{max}	T _{min}
случая	град. С	град. С	град. С	град. С	град. С	град. С	град. С	град. С	град. С
1	25	17	8	7	0.3	0.6	7.3	33	20
			(21-29,	(26-33)	(23.1-	(24.0-	(18.0-		
			max=30)	max=33)	24.4)	24.6)	25.3)		
2	22	19	6	9	0.1	0.2	6.75	35	22
			(22-28,	(26-35)	(22.1-	(22.0-	(19.8-		
			max=31)	max=35)	22.2	22.2)	26.5)		

Видно, что чем ближе температура воды для охлаждения корпуса ROC-камеры к температуре окружающей среды, тем меньше разброс температур на пэдовой плоскости.

- перегрев плат с микросхемами SAMPA при хорошем качестве их монтажа составляет величину dT=(3-4)⁰C относительно температуры воды
- перегрев плат с микросхемами FPGA при хорошем качестве их монтажа составляет величину dT=(7-9)⁰С относительно температуры воды
- карты на переходной пластине (на ее краях) нагреваются до температуры 35°С (max), что не влияет на их работоспособность и не сильно никак не влияет на величину теплового потока от них на пэдовую плоскость самой камеры
- Показана эффективность применения двухконтурной системы охлаждения: один контур для карт электроники считывания (с более низкой температурой воды), а второй – для корпуса ROC-камеры
- Показано, что в этом случае распределение температуры по пэдовой плоскости камеры не превышает **dT ≤0.1°C** (при **приближении** температуры хладагента для термостабилизации корпуса камеры к температуре окружающего её воздуха), что удовлетворяет требованиям на разброс температуры газовой смеси Ar/CH4 (90:10) в дрейфовом объеме TPC (≤0.5°C).

5. Расчётная часть

Расчёты для стационарного теплового режима проводились в Autodesk Inventor Nastran. Все граничные условия в расчётной части соответствуют экспериментальным.

Случай 1: Случай 2: Water ROC T=25°C (T1), Water FEC T=17°C (T2) Air T=23°C Water ROC T=22°C (T1), Water FEC T=19°C (T2) Air T=23°C →T min = 30.4°C, T max = 31.6°C; ΔT=1,2°C →T min = 32.5°C, T max = 33.6°C; ΔT=1,1°C

Больший интерес представляют расчёты для нестационарного теплового режима с попыткой оценить влияние колебания температуры на входах контуров водяного охлаждения, связанного с режимом работы чиллера. Граничные условия на входах были заданы упрощённо по определенному алгоритму, имитирующего работу чиллера.

За минимум принята Т воды охлаждения FEC =19^oC, нагрев до срабатывания чиллера 1^oC, период колебаний составляет 40 сек.

Temperature, Node 4

Переходной режим при системе охлаждения радиаторов (SAMPA).

Вид сверху

Переходной режим при системе охлаждения радиаторов (SAMPA).

Вид снизу

Переходной режим при системе охлаждения радиаторов широкой части (SAMPA). Вид сверху

- 0.2 - 0.1

(6) Temperature - Celsius 15.9248 - 15.9

- 15.85

- 15.8 - 15.75 - 15.7 - 15.65 - 15.6 - 15.5 - 15.5 - 15.5 - 15.5

- 15.4

- 15.35 - 15.3

- 15.25 - 15.2 - 15.15 - 15.1 - 15.05 96.439

Заключение Послесловие

Контура Системы охлаждения электроники

СПАСИБО!