Double spin asymmetries in the elastic $e \vec{p} \rightarrow e \vec{p}, e \vec{p} \rightarrow \overrightarrow{e p}$ and $\vec{e} \vec{p} \rightarrow e p$ processes in the case of parallel spins

Mikhail Galynskii ${ }^{1}$ and Yury Bystritskiy ${ }^{2}$
${ }^{1}$ Joint Institute for Power and Nuclear Research-Sosny BAS, Minsk, Belarus
2 Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia 31 August 2023

The XV-th international school-conference
"The actual problems of microworld physics"
Minsk, Belarus, 27 August - 3 September, 2023

Rosenbluth Method or Rosenbluth Technique (RT)

The Rosenbluth method for measuring of the electric $\left(G_{E}\right)$ and magnetic $\left(G_{M}\right)$ proton form factors (so-called Sachs form factors) ratio is based on the measurements of the unpolarized cross section of the elastic process of the electron scattering on the proton

$$
e\left(p_{1}\right)+p\left(q_{1}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}\right)
$$

in the laboratory reference frame $\left(q_{1}=(M, \overrightarrow{0})\right)$ and $m_{e}=0$ in the onephoton exchange approximation [1]:

$$
\begin{gather*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} E_{2} \cos ^{2}\left(\theta_{e} / 2\right)}{4 E_{1}^{3} \sin ^{4}\left(\theta_{e} / 2\right)} \frac{1}{1+\tau_{p}}\left(G_{E}^{2}+\frac{\tau_{p}}{\varepsilon} G_{M}^{2}\right) . \tag{1}\\
 \tag{2}\\
G_{E}=F_{1}-\tau_{p} F_{2}, G_{M}=F_{1}+F_{2}, \tag{3}\\
\\
\varepsilon=\left(1+2\left(1+\tau_{p}\right) \tan ^{2}\left(\theta_{e} / 2\right)\right)^{-1}
\end{gather*}
$$

Here $\tau_{p}=Q^{2} / 4 M^{2}, Q^{2}=-q^{2}=4 E_{1} E_{2} \sin ^{2}\left(\theta_{e} / 2\right), q=q_{2}-q_{1}$, $\alpha=1 / 137$ - fine structure constant, $\boldsymbol{\varepsilon}$ is the degree of the linear polarization of the virtual photon, $0 \leqslant \varepsilon \leqslant 1$
[1]. M. Rosenbluth, Phys. Rev. 79, 615 (1950)

My question to the audience

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} E_{2} \cos ^{2}\left(\theta_{e} / 2\right)}{4 E_{1}^{3} \sin ^{4}\left(\theta_{e} / 2\right)} \frac{1}{1+\tau_{p}}\left(G_{E}^{2}+\frac{\tau_{p}}{\varepsilon} G_{M}^{2}\right) . \\
G_{E}=F_{1}-\tau_{p} F_{2}, G_{M}=F_{1}+F_{2} .
\end{gathered}
$$

My question: What is the physical meaning of the decomposition of the Rosenbluth formula into two terms containing only the squares of the Sachs form factors ?

It is usually stated in the modern literature, in particular, in textbooks on the physics of elementary particles [1], that the Sachs form factors are simply convenient because they allow the representation of the Rosenbluth formula in the simple and compact form of the sum of two terms containing only G_{E}^{2} and G_{M}^{2}. These formal reasons for advantages of the Sachs form factors are included, in particular, in known monographs [2,3], are not criticized, and are reproduced until now, e.g., in dissertation [4].
[1] F. Halzen and A. Martin, Quarks and Leptons, 1984.
[2] A. I. Akhiezer and V. B. Berestetskii, QED, Nauka, Moscow, 1969.
[3] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Course of Theoretical Physics, Vol. 4: QED, Nauka, Moscow, 1989.
[4] A. J. R. Puckett, Thesis, arXiv: nucl-ex/1508.01456v1.

Erroneous terminology (red color)

In [1]: ε is the virtual photon longitudinal polarization parameter...
\ln [5]: Let us introduce another set of kinematical variables: Q^{2}, and the degree of the linear polarization of the virtual photon, ε
In [7]: The ε is often erroneously called in literature as a degree of longitudinal polarization. In fact, it is a degree of linear polarization.
In [8]: If the scattering is described by the one-photon exchange approximation, then for unpolarized electrons the virtual photons are linearly polarized, whereas for polarized electrons the photons are elliptically polarized.
[1]. I. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[2]. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).
[3]. A. Akhiezer, M. Rekalo, Fiz. Elem. Chast.Atom. Yadra 4, 662 (1973).
[4]. M. V. Galynskii and M. I. Levchuk, Phys. At. Nucl. 60, 1855 (1997).
[5]. G.I. Gakh, E. Tomasi-Gustafsson, Nuclear Physics A 799, 127 (2008).
[6]. F. Gil-Dominguez, J.Alarcon, C. Weiss, arXiv: 2306.01037 [hep-ph].
[7]. N.Korchagin, and A.Radzhabov, arXiv: 2106.06883v1 [nucl-th].
[8]. M.J. Alguard et al. PRL 37, 1261 (1976).

Akhiezer-Rekalo method of the Polarization transfer (PT)

A.I. Akhiezer and M.P. Rekalo proposed a method for measuring of the Sachs form factors ratio in the process $\overrightarrow{e p} \rightarrow e \vec{p}$ [2]:

$$
\begin{equation*}
e\left(p_{1}, s_{e_{1}}\right)+p\left(q_{1}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}, s_{p_{2}}\right) \tag{4}
\end{equation*}
$$

Their method relies on the phenomenon of polarization transfer from the longitudinally polarized initial electron to the final proton and requires measurement of the spin-dependent cross section. This method is called by the polarization transfer (PT) method. In paper [2] was shown that the ratio of the degrees of longitudinal $\left(P_{l}\right)$ and transverse $\left(P_{t}\right)$ polarizations of the scattered proton has the form

$$
\begin{equation*}
\frac{P_{l}}{P_{t}}=-\frac{G_{M}}{G_{E}} \frac{E_{e 1}+E_{e 2}}{2 M} \tan \frac{\theta_{e}}{2} . \tag{5}
\end{equation*}
$$

[2] A. Akhiezer, M. Rekalo, Fiz.Elem.Chast.Atom. Yadra 4, 662 (1973).

Discrepancy between RT and PT JLab-experiments

Рис. : 1. The world data on the proton form factor ratio, $\mu_{p} G_{E} / G_{M}$. left panel: black symbols - TR (without TPE correction), color symbols - method AR.

$$
\begin{equation*}
R \equiv \mu_{p} G_{E} / G_{M} \approx 1-0.13\left(Q^{2}-0.04\right) \approx 1-\frac{1}{8} Q^{2} \tag{6}
\end{equation*}
$$

$\mu_{p} G_{E} / G_{M}$ from double spin asymmetry (3th Method)
In the experiment [2], the ratio of R were extracting by the method [3] from the results of measurements of double spin asymmetry in the process

$$
e\left(p_{1}, s_{e_{1}}^{\|}\right)+p\left(q_{1}, s_{p_{1}}^{\perp}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}\right)
$$

$E_{1}=4.725$ (5.895) GeV, $Q^{2}=2.06(5.66) \mathrm{GeV}^{2}, P_{t}=(70 \pm 5) \%$, $P_{e}=(73 \pm 1.5) \%$.

[2] A. Liyanage et. al. (SANE Collab.), Phys. Rev. C 101, 035206 (2020).
[3] T.W. Donnelly and A.S. Raskin, Annals of Physics 169, 247 (1986).

Feynman diagrams for the $e p \rightarrow e p$ process

Vertex Corrections

Two-Photon Exchange

Рис.: 1. Feynman diagrams for the $e p \rightarrow e p$ process:
(a) corresponds to the one-photon exchange or first Born approximation. (b)-(e) show the first-order bremsstrahlung process $\ell^{ \pm} p \rightarrow \ell^{ \pm} p \gamma$ in the cases when the photon is emitted by the initial-state lepton (b), final-state lepton (c), initial-state proton (d), or final-state proton (e). (f)-(j) represent the processes contributing to the virtual-photon corrections: the vacuum polarization correction (f), the lepton (g) and proton (h) vertex corrections, and the TPE corrections (i), (j).

Present status of the question

In order to resolve this contradiction, it was assumed that the discrepancy in question may be caused by disregarding, in the respective analysis, the contribution of two-photon exchange [1,2]:
[1] P. Guichon, M. Vanderhaeghen, PPL. 91, 142303 (2003),
[2] P. Blunden, W. Melnitchouk, J. A. Tjon, PRL. 91, 142304 (2003).
At the present time, three experiments aimed at studying the contribution of TPE are known:

1) experiment at the VEPP-3 storage ring in Novosibirsk,
2) the EG5 CLAS experiment at JLab,
3) the OLYMPUS experiment at the DORIS accelerator at DESY.
[exp1] I. A. Rachek, et al., Phys. Rev. Lett. 114 (2015) 062005.
[exp2] D. Adikaram et al., Phys. Rev. Lett., 114 (2015) 062003.
[exp3] B.S. Henderson et al. Phys. Rev. Lett. 118 (2017) 092501.

Ranalysis of three experiments taking into account TPE [1]

Pис.: 3. (a) $\mu_{p} G_{E} / G_{M}$, versus Q^{2}, extracted using RT and PT separation in experiments Walker1994, Andivahis1994, Qattan2005. (b) The ratio $\mu_{p} G_{E} / G_{M}$ extracted from a reanalysis of the RT data using improved standard RCs together with the TPE effects from [1].
[1] J. Ahmed, P. Blunden, W. Melnitchouk, PRC 102, 045205 (2020).
[2] M. Christy et al. PRL 128, $102002(2022)\left(Q^{2} \approx 15,76 \mathrm{GeV}^{2}\right)$.
[3] M. V. Galynskii, Phys. Part. Nucl. Lett. 19, 26 (2022).

New Rosenbluth separations [1]

Puc.: Direct Rosenbluth separation in a new Q^{2} regime with energy beam from 2.2 to 11 GeV and Q^{2} from 1.577 to $15.76 \mathrm{GeV}^{2}$.

Таблица: Values Δ_{σ} at $R=R_{d}$ for $E_{1}(\mathrm{GeV})$ and $Q^{2}\left(\mathrm{GeV}^{2}\right)$ in [1].
$\Delta_{\sigma}=\sigma^{\uparrow \uparrow} /\left(\sigma^{\uparrow \uparrow}+\sigma^{\downarrow \uparrow}\right), \Delta_{\sigma}>\Delta_{0}$ not gold; $\operatorname{LHRS}(1.6 \%) ; \operatorname{RHRS}(* 2.0 \%)$.

$E_{1} \backslash Q^{2}$	1.577	1.858	4.543	5.947	6.993	7.992	9.002	9.053	9.807	11.19	12.07	12.57	15.76
10.587													$\mathbf{0 . 0 0 9}$
10.587	0.221	0.193	0.086	0.064	0.053	0.045	0.038	0.038	0.033	0.026	0.022	0.020	
8.518							0.031		0.026	$* \mathbf{0 . 0 1 8}$	$* \mathbf{0 . 0 1 3}$	$* \mathbf{0 . 0 1 1}$	
6.427			0.076	0.051	0.037	0.026		$*$	$\mathbf{0 . 0 1 6}$				
2.222	0.168	$* 0.130$											

[1] M. Christy et al. PRL 128, 102002 (2022).

Double spin asymmetries in the elastic processes

$e \vec{p} \rightarrow e \vec{p}, e \vec{p} \rightarrow \overrightarrow{e p}, \vec{e} \vec{p} \rightarrow e p$ (a case of parallel spins [1])

$$
\begin{align*}
& e\left(p_{1}\right)+p\left(q_{1}, s_{1}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}, s_{2}\right)[2-7] \tag{7}\\
& e\left(p_{1}\right)+p\left(q_{1}, s_{p_{1}}\right) \rightarrow e\left(p_{2}, s_{e_{2}}\right)+p\left(q_{2}\right) \tag{8}\\
& e\left(p_{1}, s_{e_{1}}\right)+p\left(q_{1}, s_{p_{1}}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}\right) \tag{9}\\
& \boldsymbol{a}=\boldsymbol{q}_{2} / q_{20}-\boldsymbol{q}_{1} / q_{10} \tag{10}
\end{align*}
$$

In the frame, where $q_{1}=(m, \mathbf{0}), q_{2}=\left(q_{20}, \boldsymbol{q}_{2}\right)$

$$
\begin{equation*}
\boldsymbol{c}=\boldsymbol{c}_{p_{1}}=\boldsymbol{c}_{p_{2}}=\boldsymbol{n}_{p_{2}}=\boldsymbol{q}_{2} /\left|\boldsymbol{q}_{2}\right| \tag{11}
\end{equation*}
$$

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).
[2] M. Galynskii, E.Kuraev, Yu.Bystritskiy, JETP Lett. 88, 481 (2008).
[3] M.V. Galynskii, JETP Lett. 109, 1 (2019).
[4] M.V. Galynskii and R.E. Gerasimov, JETP Lett. 110, 646 (2019).
[5] M.V. Galynskii, JETP Lett. 113, 555 (2021)
[6] M.V. Galynskii, Phys. Part. Nucl. Lett. 19, 26 (2022).
[7] M.V. Galynskii, JETP Lett. 116, 420 (2022).

Helicity spin bases

The spin 4-vector $s=\left(s_{0}, \boldsymbol{s}\right)$ of the fermion with 4-momentum p ($p^{2}=m^{2}$) satisfying the conditions $s p=0$ and $s^{2}=-1$, is given by

$$
\begin{equation*}
s=\left(s_{0}, \boldsymbol{s}\right), \quad s_{0}=\frac{\boldsymbol{c} \boldsymbol{p}}{m}, \quad s=\boldsymbol{c}+\frac{(\boldsymbol{c} \boldsymbol{p}) \boldsymbol{p}}{m\left(p_{0}+m\right)} \tag{12}
\end{equation*}
$$

where $\boldsymbol{c}\left(\boldsymbol{c}^{2}=1\right)$ is the axis of spin quantization. If the 4 -vector s is known, then the spin quantization axis c is given by

$$
\begin{equation*}
\boldsymbol{c}=\boldsymbol{s}-\frac{s_{0}}{p_{0}+m} \boldsymbol{p} \tag{13}
\end{equation*}
$$

At present, the most popular in high-energy physics is the helicity basis [1], in which the spin quantization axis is directed along the momentum of the particle ($c=n=p /|p|$), while the spin 4-vector (12) defined as

$$
\begin{equation*}
s=\left(s_{0}, \boldsymbol{s}\right)=\left(|\boldsymbol{v}|, v_{0} \boldsymbol{n}\right) \tag{14}
\end{equation*}
$$

where $v=\left(v_{0}, \boldsymbol{v}\right), v=p / m, v^{2}=1$.
[1] M. Jacob and G. Wick, Ann. Phys. 7, 404 (1959).

Diagonal spin bases (for the $e \vec{p} \rightarrow e \vec{p}$ process)

For the process under consideration

$$
\begin{equation*}
e\left(p_{1}\right)+p\left(q_{1}, s_{p_{1}}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}, s_{p_{2}}\right), \tag{15}
\end{equation*}
$$

where $p_{1}, q_{1}\left(p_{2}, q_{2}\right)$ - the 4 -momenta of the initial (final) electrons and protons with masses m_{0} and m, it is possible to project the spins of the initial proton and the final electron in one common direction given by [1]

$$
\begin{equation*}
\boldsymbol{a}=\boldsymbol{q}_{2} / q_{20}-\boldsymbol{q}_{1} / q_{10} . \tag{16}
\end{equation*}
$$

The geometric image of (16) is the diagonal of the parallelogram, it is natural to call it the diagonal spin basis (DSB). In DSB $s_{p_{1}}$ and $s_{p_{2}}$ are

$$
\begin{equation*}
s_{p_{1}}=\frac{m^{2} q_{2}-\left(q_{1} q_{2}\right) q_{1}}{m \sqrt{\left(q_{1} q_{2}\right)^{2}-m^{4}}}, \quad s_{p_{2}}=\frac{\left(q_{1} q_{2}\right) q_{2}-m^{2} q_{1}}{m \sqrt{\left(q_{1} q_{2}\right)^{2}-m^{4}}} . \tag{17}
\end{equation*}
$$

In the frame, where $q_{1}=(m, \mathbf{0}), q_{2}=\left(q_{20}, \boldsymbol{q}_{2}\right)$ the spin 4-vectors (17) reduces to

$$
\begin{equation*}
s_{p_{1}}=\left(0, \boldsymbol{n}_{2}\right), s_{p_{2}}=\left(\left|\boldsymbol{v}_{2}\right|, v_{20} \boldsymbol{n}_{\mathbf{2}}\right), \boldsymbol{n}_{2}=\boldsymbol{q}_{\boldsymbol{2}} /\left|\boldsymbol{q}_{2}\right| \tag{18}
\end{equation*}
$$

where $v_{2}=\left(v_{20}, \boldsymbol{v}_{\mathbf{2}}\right)=q_{2} / m$.

$$
\begin{equation*}
\boldsymbol{c}=\boldsymbol{c}_{p_{1}}=\boldsymbol{c}_{p_{2}}=\boldsymbol{n}_{2}=\boldsymbol{q}_{\mathbf{2}} /\left|\boldsymbol{q}_{2}\right| . \tag{19}
\end{equation*}
$$

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).

Diagonal spin bases (for the $e \vec{p} \rightarrow \overrightarrow{e p}$ process)

For the process under consideration

$$
\begin{equation*}
e\left(p_{1}\right)+p\left(q_{1}, s_{p_{1}}\right) \rightarrow e\left(p_{2}, s_{e_{2}}\right)+p\left(q_{2}\right), \tag{20}
\end{equation*}
$$

where $p_{1}, q_{1}\left(p_{2}, q_{2}\right)$ - the 4 -momenta of the initial (final) electrons and protons with masses m_{0} and m, it is possible to project the spins of the initial proton and the final electron in one common direction given by [1]

$$
\begin{equation*}
\boldsymbol{a}=\boldsymbol{p}_{2} / p_{20}-\boldsymbol{q}_{1} / q_{10} . \tag{21}
\end{equation*}
$$

The geometric image of (21) is the diagonal of the parallelogram, it is natural to call it the diagonal spin basis (DSB). In DSB $s_{p_{1}}$ and $s_{e_{2}}$ are

$$
\begin{equation*}
s_{p_{1}}=\frac{m^{2} p_{2}-\left(q_{1} p_{2}\right) q_{1}}{m \sqrt{\left(q_{1} p_{2}\right)^{2}-m^{2} m_{0}^{2}}}, s_{e_{2}}=\frac{\left(q_{1} p_{2}\right) p_{2}-m_{0}^{2} q_{1}}{m_{0} \sqrt{\left(q_{1} p_{2}\right)^{2}-m^{2} m_{0}^{2}}} . \tag{22}
\end{equation*}
$$

In the frame, where $q_{1}=(m, \mathbf{0})$, the spin 4-vectors (22) reduces to

$$
\begin{equation*}
s_{p_{1}}=\left(0, \boldsymbol{n}_{\mathbf{2}}\right), s_{e_{2}}=\left(\left|\boldsymbol{v}_{\mathbf{2}}\right|, v_{20} \boldsymbol{n}_{\mathbf{2}}\right), \tag{23}
\end{equation*}
$$

where $\boldsymbol{n}_{2}=\boldsymbol{p}_{\mathbf{2}} /\left|\boldsymbol{p}_{2}\right|, v_{2}=\left(v_{20}, \boldsymbol{v}_{\mathbf{2}}\right)=p_{2} / m_{0}$.

$$
\begin{equation*}
\boldsymbol{a}=\boldsymbol{c}=\boldsymbol{c}_{p_{1}}=\boldsymbol{c}_{e_{2}}=\boldsymbol{n}_{2}=\boldsymbol{p}_{\mathbf{2}} /\left|\boldsymbol{p}_{2}\right| . \tag{24}
\end{equation*}
$$

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).

Diagonal spin bases (for the $\overrightarrow{e p} \rightarrow e p$ process)

For the process under consideration

$$
\begin{equation*}
e\left(p_{1}, s_{e_{1}}\right)+p\left(q_{1}, s_{p_{1}}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}\right) \tag{25}
\end{equation*}
$$

the common axis of spin quantization given by [1]

$$
\begin{equation*}
\boldsymbol{a}=\boldsymbol{p}_{1} / p_{10}-\boldsymbol{q}_{1} / q_{10} . \tag{26}
\end{equation*}
$$

The geometric image of (26) is the diagonal of the parallelogram, it is natural to call it the diagonal spin basis (DSB). In DSB $s_{p_{1}}$ and $s_{e_{1}}$ are

$$
\begin{equation*}
s_{p_{1}}=\frac{m^{2} p_{1}-\left(q_{1} p_{1}\right) q_{1}}{m \sqrt{\left(q_{1} p_{1}\right)^{2}-m^{2} m_{0}^{2}}}, \quad s_{e_{1}}=\frac{\left(q_{1} p_{1}\right) p_{1}-m_{0}^{2} q_{1}}{m_{0} \sqrt{\left(q_{1} p_{1}\right)^{2}-m^{2} m_{0}^{2}}} . \tag{27}
\end{equation*}
$$

In the frame, where $q_{1}=(m, \mathbf{0})$, the spin 4-vectors (27) reduces to

$$
\begin{gather*}
s_{p_{1}}=\left(0, \boldsymbol{n}_{e_{1}}\right), s_{e_{1}}=\left(\left|\boldsymbol{v}_{\boldsymbol{e}_{1}}\right|, v_{e_{10}} \boldsymbol{n}_{\boldsymbol{e}_{1}}\right), \boldsymbol{n}_{e_{1}}=\boldsymbol{p}_{\mathbf{1}} /\left|\boldsymbol{p}_{1}\right| . \tag{28}\\
\boldsymbol{c}=\boldsymbol{c}_{p_{1}}=\boldsymbol{c}_{e_{1}}=\boldsymbol{n}_{e_{1}}=\boldsymbol{p}_{\mathbf{1}} /\left|\boldsymbol{p}_{\mathbf{1}}\right| . \tag{29}
\end{gather*}
$$

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).

Ultrarelativistic limit

In the ultrarelativistic limit, when the electron mass can be neglected (i.e. at $p_{10}, p_{20} \gg m_{0}$), the spin 4 -vectors (22), (27) reduces to

$$
\begin{gather*}
s_{p_{1}}=\frac{m^{2} p_{2}-\left(q_{1} p_{2}\right) q_{1}}{m\left(q_{1} p_{2}\right)}, \quad s_{e_{2}}=\frac{p_{2}}{m_{0}} . \tag{30}\\
s_{p_{1}}=\frac{m^{2} p_{1}-\left(q_{1} p_{1}\right) q_{1}}{m\left(q_{1} p_{2}\right)}, \quad s_{e_{1}}=\frac{p_{1}}{m_{0}} . \tag{31}
\end{gather*}
$$

Q^{2}-dependence θ_{e} and θ_{p} by energies in experiment [1]

Puc.: 4. Electron scattering angle θ_{e} and proton scattering angle θ_{p} versus Q^{2} at the electron beam energies used in the experiment [1]. The $\theta_{e 4}, \theta_{p 4}$, and $\theta_{e 5}, \theta_{p 5}$ lines are plotted for $E_{1}=4.725$ and 5.895 GeV .

Таблица: 1. Electron scattering angle θ_{e} and proton scattering angle θ_{p}

$E_{1}(\mathrm{GeV})$	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$\theta_{e}(\mathrm{rad})$	$\theta_{p}(\mathrm{rad})$	$Q_{\max }^{2}(\mathrm{GeV})^{2}$
5.895	2.06	0.27	0.79	10.247
5.895	5.66	0.59	0.43	10.247
4.725	2.06	0.35	0.76	8.066
4.725	5.66	0.86	0.35	8.066

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).

Differential cross section of the $e \vec{p} \rightarrow e \vec{p}$ process

$$
\begin{align*}
& e\left(p_{1}\right)+p\left(q_{1}, s_{p_{1}}\right) \rightarrow e\left(p_{2}\right)+p\left(q_{2}, s_{p_{2}}\right) \\
& \frac{d \sigma_{\delta_{1}, \delta_{2}}}{d t}=\frac{\pi \alpha^{2}}{\lambda_{s}\left(1+\tau_{p}\right)}\left(\omega_{+} G_{E}^{2} Y_{1}+\omega_{-} \tau_{p} G_{M}^{2} Y_{2}\right) \frac{1}{q^{4}} \tag{32}\\
& Y_{1}=\left(p_{+} q_{+}\right)^{2}+q_{+}^{2} q_{-}^{2} \tag{33}\\
& Y_{2}=\left(p_{+} q_{+}\right)^{2}-q_{+}^{2}\left(q_{-}^{2}+4 m_{0}^{2}\right) \tag{34}\\
& \lambda_{s}=4\left(\left(p_{1} q_{1}\right)^{2}-m_{0}^{2} m^{2}\right)=\lambda\left(s, m_{0}^{2}, m^{2}\right) \\
& \omega_{+}=\left(1+\lambda_{p_{1}} \lambda_{p_{2}}\right) / 2, \omega_{-}=\left(1-\lambda_{p_{1}} \lambda_{p_{2}}\right) / 2
\end{align*}
$$

λ_{s} is the Källén function, $p_{+}=p_{1}+p_{2}, q_{ \pm}=q_{2} \pm q_{1}, q_{-}=q, t=q^{2}$. Longitudinal polarization degree of the final proton

$$
\begin{gather*}
P_{r}=P_{t} \frac{G_{E}^{2} Y_{1}-\tau_{p} G_{M}^{2} Y_{2}}{G_{E}^{2} Y_{1}+\tau_{p} G_{M}^{2} Y_{2}}=P_{t} \frac{R^{2}-\tau_{p} \mu_{p}^{2}\left(Y_{2} / Y_{1}\right)}{R^{2}+\tau_{p} \mu_{p}^{2}\left(Y_{2} / Y_{1}\right)} \tag{35}\\
P_{r}=P_{t} \frac{\left(R_{\sigma}-1\right)}{\left(R_{\sigma}+1\right)}, R_{\sigma}=\frac{\sigma^{\uparrow \uparrow}}{\sigma^{\downarrow \uparrow}}=\frac{Y_{1} G_{E}^{2}}{\tau_{p} Y_{2} G_{M}^{2}}=\frac{Y_{1}}{Y_{2}} \frac{R^{2}}{\tau_{p} \mu_{p}^{2}} \tag{36}\\
R^{2}=\mu_{p}^{2} \tau_{p} \frac{Y_{2}}{Y_{1}} \frac{1+R_{p}}{1-R_{p}}, R_{p}=\frac{P_{r}}{P_{t}}, P_{t}=\lambda_{p_{1}}, P_{r}=\lambda_{p_{2}}^{f} \tag{37}
\end{gather*}
$$

Angular dependence of the polarization transfer

Pис.: (a) Dependence of P_{r} (36) on the proton scattering angle θ_{p} for the E_{1} and P_{t} values used in the experiment [1] in the entire range of variation in the angle $\theta_{p} \in\left(90^{\circ}, 0^{\circ}\right)$. (b) The same dependence in the range $\theta_{p} \in\left(47^{\circ}, 18^{\circ}\right)$, in which $2.06 \mathrm{GeV}^{2} \leqslant \mathrm{Q}^{2} \leqslant 5.66 \mathrm{GeV}^{2}$. The $P d, P j$, and $P k$ lines correspond to the dipole dependence (38), the Qattan parameterization (58) from [2], and the Kelly parameterization from [3].
[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I. A. Qattan [et al.], Phys. Rev. C 91, 065203 (2015).
[3] J. J. Kelly, Phys. Rev. C 70, 068202 (2004).

Q^{2}-dependence of the polarization transfer

Pис.: Q^{2}-dependence of the polarization transfer to the recoil proton in the case $R=R_{d}$ and $R=R_{j}$ from [2] for $E_{1}=4.725$ (5.895) GeV and $P_{t}=0.70$.

$$
\begin{align*}
& R_{d}=1 \tag{38}\\
& R_{j}=\left(1+0.1430 Q^{2}-0.0086 Q^{4}+0.0072 Q^{6}\right)^{-1} \tag{39}
\end{align*}
$$

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I. A. Qattan [et al.], Phys. Rev. C 91, 065203 (2015)
[3] J. J. Kelly, Phys. Rev. C 70, 068202 (2004).

Relative differences of the polarization transfer

Table 4 contains the polarizations $P j 5, P d 5, P j 4, P d 4, P k 5$, and $P k 4$, and their relative differences (in percent) $\Delta_{d j}$ and $\Delta_{d k}$

$$
\Delta_{d j}=\left|\frac{\mathrm{Pd}-\mathrm{Pj}}{\mathrm{Pd}}\right|, \Delta_{j k}=\left|\frac{\mathrm{Pj}-\mathrm{Pk}}{\mathrm{Pj}}\right|
$$

Таблица: Degree of longitudinal polarization of the recoil proton P_{r} (36) at electron beam energies $E_{1}=4.725(5.895) \mathrm{GeV}$ and values $Q^{2}=2.06$ (5.66) GeV^{2}. The values in the columns for $P d, P j$, and $P k$ correspond to the dipole dependence (38) $R=R_{d}$, the Qattan parameterization R_{j} (58) and the Kelly parameterization $R=R_{k}$.

$E_{1}(\mathrm{GeV})$	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$\theta_{e}(\mathrm{deg})$	$\theta_{p}(\mathrm{deg})$	$P d$	$P j$	$P k$	$\Delta_{d j}, \%$	$\Delta_{d k}, \%$
5.895	2.06	15.51	45.23	-0.460	-0.552	-0.511	16.6	9.98
5.895	5.66	33.57	24.48	-0.628	-0.691	-0.675	9.1	6.96
4.725	2.06	19.97	43.27	-0.467	-0.556	-0.517	16.1	9.67
4.725	5.66	49.50	19.77	-0.649	-0.693	-0.682	6.4	4.84

It follows from Table 4 that, at $Q^{2}=2.06 \mathrm{GeV}^{2}$, the relative difference between Pj5 and Pd5 is 16.6 \%; the difference between $P j 4$ and $P d 4$ is approximately the same: 16.1%. At $Q^{2}=5.66 \mathrm{GeV}^{2}$ this difference decreases to 9.1 and 6.4%, respectively.

Differential cross section of the $e \vec{p} \rightarrow \overrightarrow{e p}$ process

$$
\begin{align*}
\frac{d \sigma_{e \vec{p} \rightarrow \vec{e} p}}{d t} & =\frac{\pi \alpha^{2}}{2 \lambda_{s}\left(1+\tau_{p}\right)} \frac{|T|^{2}}{t^{2}} \tag{40}\\
|T|^{2} & =I_{0}+\lambda_{p_{1}} \lambda_{e_{2}} I_{1} \tag{41}\\
I_{0} & =G_{E}^{2} Y_{1}+\tau_{p} G_{M}^{2} Y_{2} \tag{42}\\
I_{1} & =\tau_{p}\left(G_{E} G_{M} Y_{3}+G_{M}^{2} Y_{4}\right) \tag{43}
\end{align*}
$$

where $t=q^{2}, \lambda_{s}=4\left(\left(p_{1} q_{1}\right)^{2}-m_{0}^{2} m^{2}\right), \lambda_{p_{1}}\left(\lambda_{e_{2}}\right)$ - the degree of polarization of the initial proton (of the final electron). Here the functions $Y_{i}(i=1, \ldots 4)$ defined as

$$
\begin{align*}
Y_{1}= & \left(p_{+} q_{+}\right)^{2}+q_{+}^{2} q_{-}^{2} \tag{44}\\
Y_{2}= & \left(p_{+} q_{+}\right)^{2}-q_{+}^{2}\left(q_{-}^{2}+4 m_{0}^{2}\right) \tag{45}\\
-Y_{3}= & \kappa m^{2}\left(\left(p_{+} q_{+}\right)^{2}+q_{+}^{2}\left(q_{-}^{2}-4 m_{0}^{2}\right)\right) z^{2} \tag{46}\\
Y_{4}= & 2\left(m^{2} p_{+} q_{+}-\kappa q_{+}^{2}\right)\left(\kappa p_{+} q_{+}-m_{0}^{2} q_{+}^{2}\right) z^{2} \tag{47}\\
& z=\left(\kappa^{2}-m^{2} m_{0}^{2}\right)^{-1 / 2}, \kappa=q_{1} p_{2}
\end{align*}
$$

Polarization of the final electron in the $e \vec{p} \rightarrow \overrightarrow{e p}$ process

Expression (41) for $|T|^{2}$ can be written as

$$
\begin{equation*}
|T|^{2}=I_{0}+\lambda_{p_{1}} \lambda_{e_{2}} I_{1}=I_{0}\left(1+\lambda_{e_{2}} \lambda_{e_{2}}^{f}\right) . \tag{48}
\end{equation*}
$$

$\lambda_{e_{2}}^{f}$ is the longitudinal polarization degree of the final electron.

$$
\begin{equation*}
\lambda_{e_{2}}^{f}=\lambda_{p_{1}} \frac{I_{1}}{I_{0}}=\lambda_{p_{1}} \frac{\tau_{p}\left(G_{E} G_{M} Y_{3}+G_{M}^{2} Y_{4}\right)}{G_{E}^{2} Y_{1}+\tau_{p} G_{M}^{2} Y_{2}} \tag{49}
\end{equation*}
$$

Dividing the numerator and denominator in the last expression by $Y_{1} G_{M}^{2}$

$$
\begin{equation*}
\lambda_{e_{2}}^{f}=\lambda_{p_{1}} \frac{\mu_{p} \tau_{p}\left(\left(Y_{3} / Y_{1}\right) R+\mu_{p}\left(Y_{4} / Y_{1}\right)\right)}{R^{2}+\mu_{p}^{2} \tau_{p}\left(Y_{2} / Y_{1}\right)} \tag{50}
\end{equation*}
$$

Inverting relation (50), we obtain a quadratic equation with respect to R :

$$
\begin{align*}
& \alpha_{0} R^{2}-\alpha_{1} R+\alpha_{0} \alpha_{3}-\alpha_{2}=0 \tag{51}\\
& \alpha_{0}=\lambda_{e_{2}}^{f} / \lambda_{p_{1}}, \alpha_{1}=\tau_{p} \mu_{p} Y_{3} / Y_{1}, \tag{52}\\
& \alpha_{2}=\tau_{p} \mu_{p}^{2} Y_{4} / Y_{1}, \alpha_{3}=\tau_{p} \mu_{p}^{2} Y_{2} / Y_{1} .
\end{align*}
$$

Solutions to equation (51) have the form:

$$
\begin{equation*}
R=\frac{\alpha_{1} \pm \sqrt{\alpha_{1}^{2}-4 \alpha_{0}\left(\alpha_{0} \alpha_{3}-\alpha_{2}\right)}}{2 \alpha_{0}} \tag{53}
\end{equation*}
$$

Utrarelativistic limit in laboratory frame

In the ultrarelativistic limit, when the electron mass can be neglected, expressions (44)-(47) for $Y_{i}(i=1, \ldots 4)$ in LF are given by

$$
\begin{align*}
& Y_{1}=8 m^{2}\left(2 E_{1} E_{2}-m E_{-}\right), \tag{54}\\
& Y_{2}=8 m^{2}\left(E_{1}^{2}+E_{2}^{2}+m E_{-}\right), \tag{55}\\
& Y_{3}=-\left(2 m / E_{2}\right) Y_{1}, \tag{56}\\
& Y_{4}=8 m^{2} E_{+} E_{-}\left(m-E_{2}\right) / E_{2}, \tag{57}
\end{align*}
$$

where $E_{ \pm}=E_{1} \pm E_{2}$. Below we use the notation $R \equiv \mu_{p} G_{E} / G_{M}$. The formulas (54)-(57) were used to numerically calculate the Q^{2}-dependence of the longitudinal polarization degree of the scattered electron $\lambda_{e_{2}}^{f}$ (50) at electron beam energies ($E_{1}=4.725$ and 5.895 GeV) and the polarization degree of the proton target $\left(P_{t}=\lambda_{p_{1}}=0.70\right)$ in experiment [1] as while conserving the scaling of the SFF in the case of a dipole dependence ($R=R_{d}=1$), and in case of its violation. In the latter case, the parametrization $R=R_{j}$ from the paper [2] was used

$$
\begin{equation*}
R_{j}=\left(1+0.1430 Q^{2}-0.0086 Q^{4}+0.0072 Q^{6}\right)^{-1} \tag{58}
\end{equation*}
$$

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, Phys. Rev. C 91, 065203 (2015).

Longitudinal polarization degree of the scattered electron

Pис.: Q^{2}-dependence of the longitudinal polarization degree of the scattered electron $\lambda_{e_{2}}^{f}(50)$ at electron beam energies in the experiment [1]. The lines $P d 4, P d 5$ (dashed) and $P j 4, P j 5$ (solid) correspond to the ratio $R=R_{d}$ in the case of dipole dependence and parametrization $R=R_{j}$ (58) from the paper [2]. The lines $P d 4, P j 4(P d 5, P j 5)$ correspond to the energies $E_{1}=4.725(5.895) \mathrm{GeV}$.
[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, Phys. Rev. C 91, 065203 (2015).

Relative difference $\Delta_{d j}$ of the polarization effects at different parametrizations of the ratio $R \equiv \mu_{p} G_{E} / G_{M}$

The parametrizations of Qattan [1] (58) and Kelly [2] allow us to calculate the relative difference $\Delta_{d j}$ between the polarization effects

$$
\begin{equation*}
\Delta_{d j}=\left|\frac{\mathrm{Pd}-\mathrm{Pj}}{\mathrm{Pd}}\right|, \Delta_{j k}=\left|\frac{\mathrm{Pj}-\mathrm{Pk}}{\mathrm{Pj}}\right|, \tag{59}
\end{equation*}
$$

where P_{d}, P_{j} and P_{k} are the polarizations calculated by formula (50) for $\lambda_{e_{2}}^{f}$ when using the corresponding parametrizations R_{d}, R_{j} and R_{k}.

Pис.: Q^{2}-dependence of the relative difference $\Delta_{d j}(59)$ at electron beam energies $E_{1}=4.725 \mathrm{GeV}$ (red line) and $E_{1}=5.895 \mathrm{GeV}$ (blue line).
[1] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[2] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).

Comparison of the transferred to electron polarization at different parametrizations of the ratio $R \equiv \mu_{p} G_{E} / G_{M}$

Таблица: The degree of longitudinal polarization of the scattered electron $\lambda_{e_{2}}^{f}$ (50) at electron beam energies $E_{1}=4.725$ and 5.895 GeV and two values $Q^{2}=2.06$ and $5.66 \mathrm{GeV}^{2}$ in the experiment [1]. The values in the columns for P_{d}, P_{j}, P_{k} correspond to the polarization transferred to the electron $\lambda_{e_{2}}^{f}$ (50) with dipole dependence, the parametrization of Qattan [2] (58) and Kelly [3].

E_{1}, GeV	Q^{2}, GeV^{2}	$\theta_{e}\left({ }^{\circ}\right)$	$\theta_{p}\left({ }^{\circ}\right)$	P_{d}	P_{j}	P_{k}	$\Delta_{d j}, \%$	$\Delta_{j k}, \%$
5.895	2.06	15.51	45.23	-0.170	-0.163	-0.163	4.1	0.0
5.895	5.66	33.57	24.48	-0.363	-0.309	-0.308	14.9	0.3
4.725	2.06	19.97	43.27	-0.207	-0.197	-0.197	4.8	0,0
4.725	5.66	49.50	19.77	-0.336	-0.263	-0.262	21.7	0.6

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[3] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).

Differential cross section of the $\vec{e} \vec{p} \rightarrow e p$ process

$$
\begin{gather*}
\frac{d \sigma_{\vec{e} \vec{p} \rightarrow e p}}{d t}=\frac{\pi \alpha^{2}}{\lambda_{s}\left(1+\tau_{p}\right)} \frac{|T|^{2}}{t^{2}} \tag{60}\\
|T|^{2}=I_{0}+\lambda_{e_{1}} \lambda_{p_{1}} I_{1} \tag{61}\\
I_{0}=G_{E}^{2} Y_{1}+\tau_{p} G_{M}^{2} Y_{2} \tag{62}\\
I_{1}=\tau_{p}\left(G_{E} G_{M} Y_{3}+G_{M}^{2} Y_{4}\right) \tag{63}\\
Y_{1}=\left(p_{+} q_{+}\right)^{2}+q_{+}^{2} q_{-}^{2} \tag{64}\\
Y_{2}=\left(p_{+} q_{+}\right)^{2}-q_{+}^{2}\left(q_{-}^{2}+4 m_{0}^{2}\right) \tag{65}\\
-Y_{3}=2 \kappa_{2} m^{2}\left(\left(p_{+} q_{+}\right)^{2}+q_{+}^{2}\left(q_{-}^{2}-4 m_{0}^{2}\right)\right) z_{2}^{2} \tag{66}\\
Y_{4}=2\left(m^{2} p_{+} q_{+}-\kappa_{2} q_{+}^{2}\right)\left(\kappa_{2} p_{+} q_{+}-m_{0}^{2} q_{+}^{2}\right) z_{2}^{2} \tag{67}\\
\\
z_{2}=\left(\kappa_{2}^{2}-m^{2} m_{0}^{2}\right)^{-1 / 2}, \kappa_{2}=q_{1} p_{1}
\end{gather*}
$$

where $t=q^{2}, \lambda_{s}=4\left(\left(p_{1} q_{1}\right)^{2}-m_{0}^{2} m^{2}\right), \lambda_{p_{1}}\left(\lambda_{e_{1}}\right)$ - the degree of polarization of the initial proton (of the initial electron).

Double spin asymmetry in the $\vec{e} \vec{p} \rightarrow e p$ process

$$
\begin{equation*}
A=\frac{|T|^{2}\left(\lambda_{e_{1}}=-1\right)-|T|^{2}\left(\lambda_{e_{1}}=+1\right)}{|T|^{2}\left(\lambda_{e_{1}}=-1\right)+|T|^{2}\left(\lambda_{e_{1}}=+1\right)} \tag{68}
\end{equation*}
$$

$$
\begin{equation*}
A=-\lambda_{p_{1}} \frac{\tau_{p}\left(G_{E} G_{M} Y_{3}+G_{M}^{2} Y_{4}\right)}{G_{E}^{2} Y_{1}+\tau_{p} G_{M}^{2} Y_{2}} \tag{69}
\end{equation*}
$$

Dividing the numerator and denominator in (69) by $Y_{1} G_{M}^{2}$ and introducing the experimentally measured ratio $R \equiv \mu_{p} G_{E} / G_{M}$, we get

$$
\begin{equation*}
A=-\lambda_{p_{1}} \frac{\mu_{p} \tau_{p}\left(\left(Y_{3} / Y_{1}\right) R+\mu_{p}\left(Y_{4} / Y_{1}\right)\right)}{R^{2}+\mu_{p}^{2} \tau_{p}\left(Y_{2} / Y_{1}\right)} \tag{70}
\end{equation*}
$$

In the ultrarelativistic limit, when the electron mass can be neglected, in laboratory frame expressions for $Y_{i}(i=1, \ldots 4)$ are given by

$$
\begin{align*}
Y_{1} & =8 m^{2}\left(2 E_{1} E_{2}-m E_{-}\right) \tag{71}\\
Y_{2} & =8 m^{2}\left(E_{1}^{2}+E_{2}^{2}+m E_{-}\right) \tag{72}\\
-Y_{3} & =\left(2 m / E_{1}\right) Y_{1} \tag{73}\\
-Y_{4} & =8 m^{2} E_{+} E_{-}\left(m+E_{1}\right) / E_{1} \tag{74}
\end{align*}
$$

Q^{2}-dependence of the polarization asymmetry A

Pиc.: Q^{2}-dependence of the polarization asymmetry $A(70)$ in the $\vec{e} \vec{p} \rightarrow e p$ process at electron beam energies in the experiment [1]. The lines $P d 4, P d 5$ (dashed) and Pj4, Pj5 (solid) correspond to the ratio $R=R_{d}$ in the case of dipole dependence and parametrization $R=R_{j}$ (58) from [2]. The lines $P d 4$, $P j 4(P d 5, P j 5)$ correspond to the energies $E_{1}=4.725$ (5.895) GeV.
In [3] the double spin asymmetry in the process $\overrightarrow{e p} \rightarrow e p$ was measured for the first time at $E_{1}=6.47 \mathrm{GeV}, \lambda_{e_{1}}=0.51, \lambda_{p_{1}}=0.34, \theta_{e}=8.0^{\circ}$, $Q^{2}=0.76 \mathrm{GeV}^{2}, A(0.76)=0.11$. By our calculations, $A(0.76)=0.038$.
[1] A. Liyanage et al. (SANE Collaboration), PRC 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[3] M.J. Alguard et al. PRL 37, 1261 (1976).

Conclusion (a)

We have considered a possible method for measuring the ratio $R \equiv \mu_{p} G_{E} / G_{M}$ based on the transfer of polarization from the initial proton to the final electron in the $e \vec{p} \rightarrow \overrightarrow{e p}$ process, in the case when their spins are parallel, i.e. when an electron is scattered in the direction of the spin quantization axis of the resting proton target. For this purpose, in the kinematics of the SANE collaboration experiment [1], using the parametrizations of Qattan [2] and Kelly [3], a numerical analysis was carried out of the dependence of the degree of polarization of the scattered electron on the square of the momentum transferred to the proton, as well as from the scattering angles of the electron and proton. As it turned out, the parametrizations of Qattan [2] and Kelly [3] give almost identical results in calculations. It is established that the difference in the degree of longitudinal polarization of the final electron in the case of conservation and violation of the SFF scaling can reach 70%, which can be used to conduct a new type of polarization experiment to measure the ratio R.
[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[3] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).

Conclusion (b)

Proceeding from the results of JLab's polarization experiments on measuring the ratio of the Sachs form factors in the $\vec{e} p \rightarrow e \vec{p}$ process, using the Kelly (2004) and Qattan (2015) parametrizations for this ratio, in the kinematics of SANE's experiment (2020) on measuring the double spin asymmetry in the $\vec{e} \vec{p} \rightarrow e p$ process, a numerical analysis of the dependence of the longitudinal polarization transfer to the proton in the $e \vec{p} \rightarrow e \vec{p}$ process on the square of the momentum transferred to the proton, as well as from the scattering angles of the electron and proton was performed for the case where an recoil proton is scattered in the direction of the spin quantization axis of the resting proton target. It has been found that the polarization transfer to the proton is fairly sensitive to the parametrization of the ratio of the Sachs form factors, which opens possibilities for a new measurement of this ratio in the $e \vec{p} \rightarrow e \vec{p}$ process. It follows from the calculations that the violation of the scaling of the Sachs form factors leads to a significant increase in the magnitude of the polarization transfer to the proton, $\left|P_{r}\right|$, as compared to the case of the dipole dependence; the $\left|P_{r}\right|$ value, obtained with the Kelly parametrization is between the results

THANK FOR YOUR ATTENTION

The matrix elements of the proton current in the reaction

$e p \rightarrow e p$
The matrix elements of the proton current corresponding to the proton transitions without and with spin-flip calculated in the DSB have the form

$$
\begin{align*}
& \left(J_{p}^{\delta, \delta}\right)_{\mu}=2 M G_{E}\left(b_{0}\right)_{\mu}, \tag{75}\\
& \left(J_{p}^{-\delta, \delta}\right)_{\mu}=-2 M \delta \sqrt{\tau} G_{M}\left(b_{\delta}\right)_{\mu}, \tag{76}
\end{align*}
$$

In expressions (75), (76) we used an orthonormalized basis (tetrad) of four-vectors $b_{A}(A=0,1,2,3)$; that is,

$$
\begin{align*}
& b_{0}=q_{+} / \sqrt{q_{+}^{2}}, b_{3}=q_{-} / \sqrt{-q_{-}^{2}} \\
& \left(b_{1}\right)_{\mu}=\varepsilon_{\mu \nu \kappa \sigma} b_{0}^{\nu} b_{3}^{\kappa} b_{2}^{\sigma},\left(b_{2}\right)_{\mu}=\varepsilon_{\mu \nu \kappa \sigma} q_{1}^{\nu} q_{2}^{\kappa} p_{1}^{\sigma} / \rho . \tag{77}
\end{align*}
$$

Here, $q_{+}=q_{2}+q_{1}, q_{-}=q=q_{2}-q_{1}, \varepsilon_{\mu \nu \kappa \sigma}$ is the Levi-Civita tensor $\left(\varepsilon_{0123}=-1\right), p_{1}$ is the four-momentum of the initial electron, and ρ is determined from the normalization conditions $b_{1}^{2}=b_{2}^{2}=b_{3}^{2}=-b_{0}^{2}=-1$, where $b_{ \pm \delta}=b_{1} \pm i \delta b_{2}, b_{\delta}^{*}=b_{-\delta}$, and $b_{\delta} b_{\delta}^{*}=-2, \delta= \pm 1$.

