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Rosenbluth Method or Rosenbluth Technique (RT)
The Rosenbluth method for measuring of the electric (GE) and magnetic
(GM ) proton form factors (so-called Sachs form factors) ratio is based on
the measurements of the unpolarized cross section of the elastic process
of the electron scattering on the proton

e(p1) + p (q1) → e(p2) + p (q2)

in the laboratory reference frame (q1 = (M, 0⃗)) and me = 0 in the one-
photon exchange approximation [1]:
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GE = F1 − τp F2 , GM = F1 + F2 , (2)

ε = (1 + 2(1 + τp) tan
2(θe/2))

−1. (3)

Here τp = Q2/4M2, Q2 = −q2 = 4E1E2 sin
2(θe/2), q = q2 − q1,

α = 1/137 � �ne structure constant, ε is the degree of the linear

polarization of the virtual photon, 0 ⩽ ε ⩽ 1

[1]. M. Rosenbluth, Phys. Rev. 79, 615 (1950)



My question to the audience
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GE = F1 − τp F2 , GM = F1 + F2 .

My question: What is the physical meaning of the decomposition of the
Rosenbluth formula into two terms containing only the squares of the
Sachs form factors ?

It is usually stated in the modern literature, in particular, in textbooks on
the physics of elementary particles [1], that the Sachs form factors are
simply convenient because they allow the representation of the Rosen-
bluth formula in the simple and compact form of the sum of two terms
containing only G 2

E and G 2
M . These formal reasons for advantages of the

Sachs form factors are included, in particular, in known monographs [2,3],
are not criticized, and are reproduced until now, e.g., in dissertation [4].

[1] F. Halzen and A. Martin, Quarks and Leptons, 1984.
[2] A. I. Akhiezer and V. B. Berestetskii, QED, Nauka, Moscow, 1969.
[3] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,

Course of Theoretical Physics, Vol. 4: QED, Nauka, Moscow, 1989.
[4] A. J. R. Puckett, Thesis, arXiv: nucl-ex/1508.01456v1.



Erroneous terminology (red color)

In [1]: ε is the virtual photon longitudinal polarization parameter...

In [5]: Let us introduce another set of kinematical variables: Q2, and the
degree of the linear polarization of the virtual photon, ε .

In [7]: The ε is often erroneously called in literature as a degree of
longitudinal polarization. In fact, it is a degree of linear polarization.

In [8]: If the scattering is described by the one-photon exchange
approximation, then for unpolarized electrons the virtual photons are
linearly polarized, whereas for polarized electrons the photons are
elliptically polarized.

[1]. I. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[2]. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).
[3]. A. Akhiezer, M. Rekalo, Fiz. Elem. Chast.Atom.Yadra 4, 662 (1973).
[4]. M. V. Galynskii and M. I. Levchuk, Phys. At. Nucl. 60, 1855 (1997).

[5]. G.I. Gakh, E. Tomasi-Gustafsson, Nuclear Physics A 799, 127 (2008).
[6]. F. Gil-Dominguez, J.Alarcon, C. Weiss, arXiv: 2306.01037 [hep-ph].
[7]. N.Korchagin, and A.Radzhabov, arXiv: 2106.06883v1 [nucl-th].
[8]. M.J. Alguard et al. PRL 37, 1261 (1976).



Akhiezer�Rekalo method of the Polarization transfer (PT)

A.I. Akhiezer and M.P. Rekalo proposed a method for measuring of the
Sachs form factors ratio in the process e⃗p → ep⃗ [2]:

e (p1, se1) + p (q1) → e (p2) + p (q2, sp2
) (4)

Their method relies on the phenomenon of polarization transfer from the
longitudinally polarized initial electron to the �nal proton and requires
measurement of the spin-dependent cross section. This method is called
by the polarization transfer (PT) method. In paper [2] was shown that
the ratio of the degrees of longitudinal (Pl) and transverse (Pt)
polarizations of the scattered proton has the form

Pl

Pt
= −GM

GE

Ee1 + Ee2

2M
tan

θe
2
. (5)

[2] A. Akhiezer, M. Rekalo, Fiz.Elem.Chast.Atom.Yadra 4, 662 (1973).



Discrepancy between RT and PT JLab-experiments
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Рис. : 1. The world data on the proton form factor ratio, µpGE/GM . left panel:
black symbols – TR (without TPE correction), color symbols – method AR.

R ≡ µpGE/GM ≈ 1 − 0.13 (Q2 − 0.04) ≈ 1 − 1

8
Q2 . (6)



µpGE/GM from double spin asymmetry (3th Method)
In the experiment [2], the ratio of R were extracting by the method [3]
from the results of measurements of double spin asymmetry in the process

e (p1, s
∥
e1) + p (q1, s

⊥
p1
) → e (p2) + p (q2)

E1=4.725 (5.895) GeV, Q2=2.06 (5.66) GeV2, Pt = (70± 5)%,
Pe = (73± 1.5) %.
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[2] A. Liyanage et. al. (SANE Collab.), Phys. Rev. C 101, 035206 (2020).
[3] T.W. Donnelly and A.S. Raskin, Annals of Physics 169, 247 (1986).



Feynman diagrams for the ep → ep process

Bremsstrahlung

Vertex Corrections Vacuum Polarization

Two-Photon ExchangeOne-Photon Exchange

Ðèñ.: 1. Feynman diagrams for the ep → ep process:
(a) corresponds to the one-photon exchange or �rst Born approximation.
(b)�(e) show the �rst-order bremsstrahlung process ℓ±p → ℓ±p γ in the cases
when the photon is emitted by the initial-state lepton (b),
�nal-state lepton (c), initial-state proton (d), or �nal-state proton (e).
(f)�(j) represent the processes contributing to the virtual-photon corrections:
the vacuum polarization correction (f), the lepton (g) and proton (h) vertex
corrections, and the TPE corrections (i), (j).



Present status of the question

In order to resolve this contradiction, it was assumed that the
discrepancy in question may be caused by disregarding, in the respective
analysis, the contribution of two-photon exchange [1,2]:

[1] P. Guichon, M. Vanderhaeghen, PPL. 91, 142303 (2003),
[2] P. Blunden, W. Melnitchouk, J. A. Tjon, PRL. 91, 142304 (2003).

At the present time, three experiments aimed at studying the
contribution of TPE are known:
1) experiment at the VEPP-3 storage ring in Novosibirsk,
2) the EG5 CLAS experiment at JLab,
3) the OLYMPUS experiment at the DORIS accelerator at DESY.

[exp1] I. A. Rachek, et al., Phys. Rev. Lett. 114 (2015) 062005.
[exp2] D. Adikaram et al., Phys. Rev. Lett., 114 (2015) 062003.
[exp3] B.S. Henderson et al. Phys. Rev. Lett. 118 (2017) 092501.



Ranalysis of three experiments taking into account TPE [1]
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Ðèñ.: 3. (a) µp GE/GM , versus Q2, extracted using RT and PT separation in
experiments Walker1994, Andivahis1994, Qattan2005. (b) The ratio
µp GE/GM extracted from a reanalysis of the RT data using improved
standard RCs together with the TPE e�ects from [1].

[1] J. Ahmed, P. Blunden, W. Melnitchouk, PRC 102, 045205 (2020).
[2] M. Christy et al. PRL 128, 102002 (2022) (Q2 ≈ 15, 76 GeV2).
[3] M. V. Galynskii, Phys. Part. Nucl. Lett. 19, 26 (2022).



New Rosenbluth separations [1]

Ðèñ.: Direct Rosenbluth separation in a new Q2 regime with energy beam from
2.2 to 11 GeV and Q2 from 1.577 to 15.76 GeV2.

Òàáëèöà: Values ∆σ at R = Rd for E1 (GeV) and Q2 (GeV2) in [1].
∆σ = σ↑↑/(σ↑↑ + σ↓↑), ∆σ > ∆0 not gold; LHRS(1.6%); RHRS (*2.0 %).

E1\Q2 1.577 1.858 4.543 5.947 6.993 7.992 9.002 9.053 9.807 11.19 12.07 12.57 15.76
10.587 0.009

10.587 0.221 0.193 0.086 0.064 0.053 0.045 0.038 0.038 0.033 0.026 0.022 0.020
8.518 0.031 0.026 *0.018 *0.013 *0.011
6.427 0.076 0.051 0.037 0.026 *0.016

2.222 0.168 *0.130

[1] M. Christy et al. PRL 128, 102002 (2022).



Double spin asymmetries in the elastic processes
ep⃗ → ep⃗, ep⃗ → e⃗p, e⃗p⃗ → ep (a case of parallel spins [1])

e(p1) + p(q1, s1) → e(p2) + p(q2, s2) [2− 7] (7)

e(p1) + p(q1, sp1) → e(p2, se2) + p(q2) (8)

e(p1, se1) + p(q1, sp1
) → e(p2) + p(q2). (9)

a = q2/q20 − q1/q10 [1]. (10)

In the frame, where q1 = (m,0), q2 = (q20, q2)

c = cp1
= cp2

= np2
= q2/|q2| . (11)

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).
[2] M.Galynskii, E.Kuraev, Yu.Bystritskiy, JETP Lett. 88, 481 (2008).
[3] M.V. Galynskii, JETP Lett. 109, 1 (2019).
[4] M.V. Galynskii and R.E. Gerasimov, JETP Lett. 110, 646 (2019).
[5] M.V. Galynskii, JETP Lett. 113, 555 (2021)
[6] M.V. Galynskii, Phys. Part. Nucl. Lett. 19, 26 (2022).
[7] M.V. Galynskii, JETP Lett. 116, 420 (2022).



Helicity spin bases
The spin 4-vector s = (s0, s) of the fermion with 4-momentum p
(p2 = m2) satisfying the conditions sp = 0 and s2 = −1, is given by

s = (s0, s), s0 =
cp

m
, s = c+

(cp)p

m(p0 +m)
, (12)

where c (c2 = 1) is the axis of spin quantization. If the 4-vector s is
known, then the spin quantization axis c is given by

c = s− s0
p0 +m

p, (13)

At present, the most popular in high-energy physics is the helicity basis
[1], in which the spin quantization axis is directed along the momentum
of the particle (c = n = p/|p|), while the spin 4-vector (12) de�ned as

s = (s0, s) = (|v|, v0 n), (14)

where v = (v0,v), v = p/m, v2 = 1.

[1] M. Jacob and G. Wick, Ann. Phys. 7, 404 (1959).



Diagonal spin bases (for the ep⃗ → ep⃗ process)
For the process under consideration

e(p1) + p(q1, sp1
) → e(p2) + p(q2, sp2

), (15)

where p1, q1 (p2, q2) � the 4-momenta of the initial (�nal) electrons and
protons with masses m0 and m, it is possible to project the spins of the
initial proton and the �nal electron in one common direction given by [1]

a = q2/q20 − q1/q10. (16)

The geometric image of (16) is the diagonal of the parallelogram, it is
natural to call it the diagonal spin basis (DSB). In DSB sp1

and sp2
are

sp1
=

m2q2 − (q1q2) q1

m
√
(q1q2)2 −m4

, sp2
=

(q1q2) q2 −m2q1

m
√
(q1q2)2 −m4

. (17)

In the frame, where q1 = (m,0), q2 = (q20, q2) the spin 4-vectors (17)
reduces to

sp1
= (0,n2) , sp2

= (|v2|, v20 n2) , n2 = q2/|q2| , (18)

where v2 = (v20,v2) = q2/m.

c = cp1
= cp2

= n2 = q2/|q2|. (19)

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).



Diagonal spin bases (for the ep⃗ → e⃗p process)
For the process under consideration

e(p1) + p (q1, sp1) → e(p2, se2) + p (q2), (20)

where p1, q1 (p2, q2) � the 4-momenta of the initial (�nal) electrons and
protons with masses m0 and m, it is possible to project the spins of the
initial proton and the �nal electron in one common direction given by [1]

a = p2/p20 − q1/q10. (21)

The geometric image of (21) is the diagonal of the parallelogram, it is
natural to call it the diagonal spin basis (DSB). In DSB sp1

and se2 are

sp1
=

m2p2 − (q1p2)q1

m
√
(q1p2)2 −m2m2

0

, se2 =
(q1p2)p2 −m2

0q1

m0

√
(q1p2)2 −m2m2

0

. (22)

In the frame, where q1 = (m,0), the spin 4-vectors (22) reduces to

sp1
= (0,n2) , se2 = (|v2|, v20 n2) , (23)

where n2 = p2/|p2|, v2 = (v20,v2) = p2/m0.

a = c = cp1
= ce2 = n2 = p2/|p2| . (24)

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).



Diagonal spin bases (for the e⃗p⃗ → ep process)
For the process under consideration

e(p1, se1) + p(q1, sp1
) → e(p2) + p(q2) (25)

the common axis of spin quantization given by [1]

a = p1/p10 − q1/q10. (26)

The geometric image of (26) is the diagonal of the parallelogram, it is
natural to call it the diagonal spin basis (DSB). In DSB sp1

and se1 are

sp1
=

m2p1 − (q1p1) q1

m
√

(q1p1)2 −m2m2
0

, se1 =
(q1p1) p1 −m2

0 q1

m0

√
(q1p1)2 −m2m2

0

. (27)

In the frame, where q1 = (m,0), the spin 4-vectors (27) reduces to

sp1 = (0,ne1) , se1 = (|ve1 |, ve10 ne1) , ne1 = p1/|p1| . (28)

c = cp1
= ce1 = ne1 = p1/|p1| . (29)

[1] F.I. Fedorov, Theor. Math. Phys. 2, 248 (1970).



Ultrarelativistic limit

In the ultrarelativistic limit, when the electron mass can be neglected
(i.e. at p10, p20 ≫ m0), the spin 4-vectors (22), (27) reduces to

sp1
=

m2p2 − (q1p2) q1
m (q1p2)

, se2 =
p2
m0

. (30)

sp1
=

m2p1 − (q1p1) q1
m (q1p2)

, se1 =
p1
m0

. (31)



Q2-dependence θe and θp by energies in experiment [1]
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Ðèñ.: 4. Electron scattering angle θe and proton scattering angle θp versus Q2

at the electron beam energies used in the experiment [1]. The θe4, θp4, and
θe5, θp5 lines are plotted for E1 = 4.725 and 5.895 GeV.

Òàáëèöà: 1. Electron scattering angle θe and proton scattering angle θp

E1 (GeV) Q2 (GeV2) θe (rad) θp (rad) Q2
max (GeV)2

5.895 2.06 0.27 0.79 10.247
5.895 5.66 0.59 0.43 10.247
4.725 2.06 0.35 0.76 8.066
4.725 5.66 0.86 0.35 8.066

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).



Di�erential cross section of the ep⃗ → ep⃗ process
e(p1) + p(q1, sp1) → e(p2) + p(q2, sp2),

dσδ1,δ2

dt
=

πα2

λs(1 + τp)

(
ω+G

2
EY1 + ω−τpG

2
MY2

) 1

q4
. (32)

Y1 = (p+q+)
2 + q2+q

2
− , (33)

Y2 = (p+q+)
2 − q2+(q

2
− + 4m2

0) , (34)

λs = 4((p1q1)
2 −m2

0 m
2) = λ(s,m2

0,m
2),

ω+ = (1 + λp1
λp2

)/2, ω− = (1− λp1
λp2

)/2,

λs is the K�all�en function, p+ = p1 + p2, q± = q2 ± q1, q− = q, t = q2.
Longitudinal polarization degree of the �nal proton

Pr = Pt
G 2

EY1 − τpG
2
MY2

G 2
EY1 + τpG 2

MY2
= Pt

R2 − τpµ
2
p(Y2/Y1)

R2 + τpµ2
p(Y2/Y1)

. (35)

Pr = Pt
(Rσ − 1)

(Rσ + 1)
, Rσ =

σ↑↑

σ↓↑ =
Y1G

2
E

τpY2G 2
M

=
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R2

τp µ2
p

. (36)

R2 = µ2
p τp

Y2

Y1

1 +Rp

1−Rp
, Rp =

Pr

Pt
, Pt = λp1

, Pr = λf
p2

(37)



Angular dependence of the polarization transfer
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Ðèñ.: (a) Dependence of Pr (36) on the proton scattering angle θp for the E1

and Pt values used in the experiment [1] in the entire range of variation in the
angle θp ∈ (90◦, 0◦). (b) The same dependence in the range θp ∈ (47◦, 18◦), in
which 2.06GeV2 ⩽ Q2 ⩽ 5.66 GeV2. The Pd, Pj, and Pk lines correspond to
the dipole dependence (38), the Qattan parameterization (58) from [2], and
the Kelly parameterization from [3].

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I. A. Qattan [et al.], Phys. Rev. C 91, 065203 (2015).
[3] J. J. Kelly, Phys. Rev. C 70, 068202 (2004).



Q2-dependence of the polarization transfer

 Pj4

Ðèñ.: Q2-dependence of the polarization transfer to the recoil proton in the
case R = Rd and R = Rj from [2] for E1 = 4.725 (5.895) GeV and Pt = 0.70.

Rd = 1, (38)

Rj = (1 + 0.1430Q2 − 0.0086Q4 + 0.0072Q6)−1, (39)

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I. A. Qattan [et al.], Phys. Rev. C 91, 065203 (2015)
[3] J. J. Kelly, Phys. Rev. C 70, 068202 (2004).



Relative di�erences of the polarization transfer

Table 4 contains the polarizations Pj5, Pd5, Pj4, Pd4, Pk5, and Pk4,
and their relative di�erences (in percent) ∆dj and ∆dk

∆dj =
∣∣∣Pd− Pj

Pd

∣∣∣, ∆jk =
∣∣∣Pj− Pk

Pj

∣∣∣
Òàáëèöà: Degree of longitudinal polarization of the recoil proton Pr (36) at
electron beam energies E1 = 4.725 (5.895) GeV and values Q2 = 2.06 (5.66)
GeV2. The values in the columns for Pd, Pj, and Pk correspond to the dipole
dependence (38) R = Rd, the Qattan parameterization Rj (58) and the Kelly
parameterization R = Rk.

E1 (GeV) Q2 (GeV2) θe (deg) θp (deg) Pd Pj Pk ∆dj , % ∆dk, %
5.895 2.06 15.51 45.23 �0.460 �0.552 �0.511 16.6 9.98
5.895 5.66 33.57 24.48 �0.628 �0.691 �0.675 9.1 6.96
4.725 2.06 19.97 43.27 �0.467 �0.556 �0.517 16.1 9.67
4.725 5.66 49.50 19.77 �0.649 �0.693 �0.682 6.4 4.84

It follows from Table 4 that, at Q2 = 2.06 GeV2, the relative di�erence
between Pj5 and Pd5 is 16.6 %; the di�erence between Pj4 and Pd4 is
approximately the same: 16.1 %. At Q2 = 5.66 GeV2 this di�erence
decreases to 9.1 and 6.4 %, respectively.



Di�erential cross section of the ep⃗ → e⃗p process

dσep⃗→e⃗p

dt
=

πα2

2λs(1 + τp)

|T |2

t2
, (40)

|T |2 = I0 + λp1λe2I1, (41)

I0 = G 2
EY1 + τp G

2
MY2, (42)

I1 = τp(GEGMY3 +G 2
MY4), (43)

where t = q2, λs = 4((p1q1)
2 −m2

0 m
2), λp1 (λe2) � the degree of

polarization of the initial proton (of the �nal electron).
Here the functions Yi (i = 1, . . . 4) de�ned as

Y1 = (p+q+)
2 + q2+q

2
−, (44)

Y2 = (p+q+)
2 − q2+(q

2
− + 4m2

0), (45)

− Y3 = 2κm2 ((p+q+)
2 + q2+(q

2
− − 4m2

0 )) z
2, (46)

Y4 = 2 (m2p+q+ − κq2+)(κp+q+ −m2
0 q

2
+)z

2, (47)

z = (κ2 −m2m2
0)

−1/2 , κ = q1p2.



Polarization of the �nal electron in the ep⃗ → e⃗p process
Expression (41) for |T |2 can be written as

|T |2 = I0 + λp1
λe2I1 = I0 (1 + λe2λ

f
e2). (48)

λf
e2 is the longitudinal polarization degree of the �nal electron.

λf
e2 = λp1

I1
I0

= λp1

τp(GEGMY3 +G 2
MY4)

G 2
EY1 + τpG 2

MY2
. (49)

Dividing the numerator and denominator in the last expression by Y1G
2
M

λf
e2 = λp1

µpτp ((Y3/Y1)R+ µp(Y4/Y1))

R 2 + µ2
p τp (Y2/Y1)

. (50)

Inverting relation (50), we obtain a quadratic equation with respect to R:

α0R
2 − α1R+ α0α3 − α2 = 0 (51)

α0 = λf
e2/λp1

, α1 = τp µp Y3/Y1, (52)

α2 = τp µ
2
p Y4/Y1, α3 = τp µ

2
p Y2/Y1.

Solutions to equation (51) have the form:

R =
α1 ±

√
α2
1 − 4α0(α0α3 − α2)

2α0
. (53)



Utrarelativistic limit in laboratory frame
In the ultrarelativistic limit, when the electron mass can be neglected,
expressions (44)�(47) for Yi (i = 1, . . . 4) in LF are given by

Y1 = 8m2(2E1E2 −mE−), (54)

Y2 = 8m2(E 2
1 + E 2

2 +mE−), (55)

Y3 = −(2m/E2)Y1, (56)

Y4 = 8m2E+E−(m− E2)/E2, (57)

where E± = E1 ± E2. Below we use the notation R ≡ µp GE/GM .
The formulas (54)�(57) were used to numerically calculate the
Q2-dependence of the longitudinal polarization degree of the scattered
electron λf

e2 (50) at electron beam energies (E1 = 4.725 and 5.895 GeV)
and the polarization degree of the proton target (Pt = λp1 = 0.70) in
experiment [1] as while conserving the scaling of the SFF in the case of a
dipole dependence (R = Rd = 1), and in case of its violation. In the
latter case, the parametrization R = Rj from the paper [2] was used

Rj = (1 + 0.1430Q2 − 0.0086Q4 + 0.0072Q6)−1, (58)

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, Phys. Rev. C 91, 065203 (2015).



Longitudinal polarization degree of the scattered electron
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Ðèñ.: Q2-dependence of the longitudinal polarization degree of the scattered
electron λf

e2 (50) at electron beam energies in the experiment [1]. The lines
Pd4, Pd5 (dashed) and Pj4, Pj5 (solid) correspond to the ratio R = Rd in
the case of dipole dependence and parametrization R = Rj (58) from the
paper [2]. The lines Pd4, Pj4 (Pd5, Pj5) correspond to the energies
E1 = 4.725 (5.895) GeV.

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, Phys. Rev. C 91, 065203 (2015).



Relative di�erence ∆dj of the polarization e�ects at di�erent
parametrizations of the ratio R ≡ µpGE/GM

The parametrizations of Qattan [1] (58) and Kelly [2] allow us to
calculate the relative di�erence ∆dj between the polarization e�ects

∆dj =
∣∣∣Pd− Pj

Pd

∣∣∣, ∆jk =
∣∣∣Pj− Pk

Pj

∣∣∣, (59)

where Pd, Pj and Pk are the polarizations calculated by formula (50) for
λf
e2 when using the corresponding parametrizations Rd, Rj and Rk.

2 3 4 5 6 7 8 9
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 E1=4.725 GeV
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Ðèñ.: Q2-dependence of the relative di�erence ∆dj (59) at electron beam
energies E1 = 4.725 GeV (red line) and E1 = 5.895 GeV (blue line).

[1] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[2] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).



Comparison of the transferred to electron polarization at
di�erent parametrizations of the ratio R ≡ µpGE/GM

Òàáëèöà: The degree of longitudinal polarization of the scattered electron λf
e2

(50) at electron beam energies E1 = 4.725 and 5.895 GeV and two values
Q2 = 2.06 and 5.66 GeV2 in the experiment [1]. The values in the columns for
Pd, Pj , Pk correspond to the polarization transferred to the electron λf

e2 (50)
with dipole dependence, the parametrization of Qattan [2] (58) and Kelly [3].

E1, GeV Q2, GeV2 θe (◦) θp (◦) Pd Pj Pk ∆dj , % ∆jk, %
5.895 2.06 15.51 45.23 �0.170 �0.163 �0.163 4.1 0.0
5.895 5.66 33.57 24.48 �0.363 �0.309 �0.308 14.9 0.3
4.725 2.06 19.97 43.27 �0.207 �0.197 �0.197 4.8 0,0
4.725 5.66 49.50 19.77 �0.336 �0.263 �0.262 21.7 0.6

[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[3] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).



Di�erential cross section of the e⃗p⃗ → ep process

dσe⃗p⃗→ep

dt
=

πα2

λs(1 + τp)

|T |2

t2
, (60)

|T |2 = I0 + λe1λp1I1, (61)

I0 = G 2
EY1 + τp G

2
MY2, (62)

I1 = τp(GEGMY3 +G 2
MY4), (63)

Y1 = (p+q+)
2 + q2+q

2
−, (64)

Y2 = (p+q+)
2 − q2+(q

2
− + 4m2

0), (65)

− Y3 = 2κ2 m
2 ((p+q+)

2 + q2+(q
2
− − 4m2

0 )) z
2
2 , (66)

Y4 = 2(m2 p+q+ − κ2 q
2
+)(κ2 p+q+ −m2

0 q
2
+) z

2
2 , (67)

z2 = (κ2
2 −m2m2

0)
−1/2 , κ2 = q1p1.

where t = q2, λs = 4((p1q1)
2 −m2

0 m
2), λp1 (λe1) � the degree of

polarization of the initial proton (of the initial electron).



Double spin asymmetry in the e⃗p⃗ → ep process

A =
|T |2(λe1 = −1)− |T |2(λe1 = +1)

|T |2(λe1 = −1) + |T |2(λe1 = +1)
. (68)

A = −λp1

τp (GEGMY3 +G 2
MY4)

G 2
EY1 + τpG 2

MY2
. (69)

Dividing the numerator and denominator in (69) by Y1G
2
M and

introducing the experimentally measured ratio R ≡ µpGE/GM , we get

A = −λp1

µpτp ((Y3/Y1)R+ µp(Y4/Y1))

R 2 + µ2
p τp (Y2/Y1)

. (70)

In the ultrarelativistic limit, when the electron mass can be neglected, in
laboratory frame expressions for Yi (i = 1, . . . 4) are given by

Y1 = 8m2(2E1E2 −mE−), (71)

Y2 = 8m2(E 2
1 + E 2

2 +mE−), (72)

− Y3 = (2m/E1)Y1, (73)

−Y4 = 8m2E+E−(m+ E1)/E1. (74)



Q2-dependence of the polarization asymmetry A
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Ðèñ.: Q2-dependence of the polarization asymmetry A (70) in the e⃗p⃗ → ep
process at electron beam energies in the experiment [1]. The lines Pd4, Pd5
(dashed) and Pj4, Pj5 (solid) correspond to the ratio R = Rd in the case of
dipole dependence and parametrization R = Rj (58) from [2]. The lines Pd4,
Pj4 (Pd5, Pj5) correspond to the energies E1 = 4.725 (5.895) GeV.

In [3] the double spin asymmetry in the process e⃗p⃗ → ep was measured
for the �rst time at E1 = 6.47 GeV, λe1 = 0.51, λp1

= 0.34, θe = 8.0◦,
Q2 = 0.76 GeV2, A(0.76) = 0.11. By our calculations, A(0.76) = 0.038.

[1] A. Liyanage et al. (SANE Collaboration), PRC 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[3] M.J. Alguard et al. PRL 37, 1261 (1976).



Conclusion (a)

We have considered a possible method for measuring the ratio
R ≡ µpGE/GM based on the transfer of polarization from the initial
proton to the �nal electron in the ep⃗ → e⃗p process, in the case when
their spins are parallel, i.e. when an electron is scattered in the direction
of the spin quantization axis of the resting proton target. For this
purpose, in the kinematics of the SANE collaboration experiment [1],
using the parametrizations of Qattan [2] and Kelly [3], a numerical
analysis was carried out of the dependence of the degree of polarization
of the scattered electron on the square of the momentum transferred to
the proton, as well as from the scattering angles of the electron and
proton. As it turned out, the parametrizations of Qattan [2] and Kelly [3]
give almost identical results in calculations. It is established that the
di�erence in the degree of longitudinal polarization of the �nal electron in
the case of conservation and violation of the SFF scaling can reach 70 %,
which can be used to conduct a new type of polarization experiment to
measure the ratio R.
[1] A. Liyanage et al. (SANE Collaboration), PRC. 101, 035206 (2020).
[2] I.A. Qattan, J. Arrington, A. Alsaad, PRC 91, 065203 (2015).
[3] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).



Conclusion (b)

Proceeding from the results of JLab's polarization experiments on
measuring the ratio of the Sachs form factors in the e⃗p → ep⃗ process,
using the Kelly (2004) and Qattan (2015) parametrizations for this ratio,
in the kinematics of SANE's experiment (2020) on measuring the double
spin asymmetry in the e⃗p⃗ → ep process, a numerical analysis of the
dependence of the longitudinal polarization transfer to the proton in the
ep⃗ → ep⃗ process on the square of the momentum transferred to the
proton, as well as from the scattering angles of the electron and proton
was performed for the case where an recoil proton is scattered in the
direction of the spin quantization axis of the resting proton target. It has
been found that the polarization transfer to the proton is fairly sensitive
to the parametrization of the ratio of the Sachs form factors, which
opens possibilities for a new measurement of this ratio in the ep⃗ → ep⃗
process. It follows from the calculations that the violation of the scaling
of the Sachs form factors leads to a signi�cant increase in the magnitude
of the polarization transfer to the proton, |Pr|, as compared to the case
of the dipole dependence; the |Pr| value, obtained with the Kelly
parametrization is between the results
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The matrix elements of the proton current in the reaction
ep → ep

The matrix elements of the proton current corresponding to the proton
transitions without and with spin-�ip calculated in the DSB have the form

(Jδ,δ
p )µ = 2M GE(b0)µ , (75)

(J−δ,δ
p )µ = −2M δ

√
τGM (bδ)µ , (76)

In expressions (75), (76) we used an orthonormalized basis (tetrad) of
four-vectors bA (A = 0, 1, 2, 3); that is,

b0 = q+/
√
q2+ , b3 = q−/

√
−q2− ,

(b1)µ = εµνκσb
ν
0b

κ
3b

σ
2 , (b2)µ = εµνκσq

ν
1 q

κ
2 p

σ
1/ρ . (77)

Here, q+ = q2 + q1, q− = q = q2 − q1, εµνκσ is the Levi-Civita tensor
(ε0123 = −1), p1 is the four-momentum of the initial electron, and ρ is
determined from the normalization conditions b21 = b22 = b23 = −b20 = −1,
where b±δ = b1 ± iδb2, b

∗
δ = b−δ, and bδb

∗
δ = −2, δ = ±1.


