

Search for Light Dark Matter in the experiment NA64 at the CERN SPS

Mikhail Kirsanov

INR Moscow

Mikhail Kirsanov Search for Light Dark Matter in NA64 at the CERN SPS

Outline

- Motivation
- The NA64 experiment (setup, runs)
- Simulation of the Dark Matter production: DMG4 package
- Results on A' in invisible mode, new analyses
- Plans for the invisible mode
- NA64h: searches in hadron beams
- ALP search in invisible mode configuration
- Visible mode: X-boson, motivation, results, new project
- (g-2) $_{\mu}$ and NA64 μ

- Production: A´ bremsstrahlung $e^{-}Z \rightarrow e^{-}Z A'$, $\sigma \sim Z^{2} \epsilon^{2}/m_{A'}^{2}$
- Decays:
 - Visible: $A' \rightarrow e^+e^-$, $\mu^+\mu^-$, hadrons,...
 - Invisible: $A' \rightarrow \chi \chi$ if $m_{A'} > 2m\chi$ assuming $\alpha_{DM} \sim \alpha >> \epsilon$. Can explain $(g-2)_{\mu}$, astrophys. observations
 - Cross section for χ -DM annihilation: $\sigma_V \sim \left[\alpha_{DM} \epsilon^2 (m_{\chi}/m_{A'})^4 \right] \alpha/m_{\chi^2}^2$

Thermal dark matter

• Assume that in the early Universe dark matter is in equilibrium with the SM matter. At some temperature the dark matter decouples

- DM density today tells us about the annihilation crosssection. Correct DM density corresponds to $<\sigma_{an}v > \sim O(1)$ pbn
- Most popular models of light (sub-GeV) dark matter χ :
 - Scalar dark matter
 - Majorana dark matter
 - Pseudo Dirac dark matter

NA64 experiment setup (invisible mode)

~50 researchers from 12 institutes, >50% from RF inst. + JINR Proposed in 2014, first test runs in 2015, approved as NA64 2016

Assembling NA64 subdetectors (2015)

NA64 in 2021-2022, permanent place at H4 prepared by the CERN Beam Division

Mikhail Kirsanov Search for Light Dark Matter in NA64 at the CERN SPS

Search for A'->invisible decays at CERN SPS

S.Andreas et al., arXiv: 1312.3309 S.G., PRD(2014)

Main components :

- clean 100 GeV e- beam
- e- tagging system: MS+SRD
 - hermetic ECAL+HCAL

- in: 100 GeV e- track
- out: $E_{ECAL} < E_0$ shower in ECAL
- no energy in Veto and HCAL

Background:

- μ , π , K decays in flight
- upstream interactions
- ◆ Tail < 50 GeV in the e- beam</p>
- Energy leak from ECAL+HCAL

One of the first important results of NA64: A $(g-2)_{\mu}$ anomaly is ruled out

CERN Courier April 2017

News

Regions of the dark-photon parameter space (mixing strength versus mass) excluded by BaBar (green) compared with the previous constraints. The new analysis rules out dark-photon coupling as the explanation for the muon (g-2) anomaly and places stringent constraints on dark-sector models.

of Caltech, who has worked on dark-photon models. "In contrast to massless dark photons, which are analogous to ordinary

h photons, this experiment constrains a slightly different idea of dark force-carrying particles that are associated with a broken symmetry, which therefore get a mass and then can decay. They are more like 'dark Z bosons' than dark photons."

Further reading

BaBar Collaboration 2017 arXiv:1702.03327. NA64 Collaboration 2017 *Phys. Rev. Lett.* **118** 011802.

NA64 in 2022

Run August – October 2022 10 weeks

* all dimensions in cm

- New ECAL +
- New low material budget MM +
- Upgrade of the electronics --+
- Added end spectrometer to study dimuons and possibly new physics
- Permanent place in NA since 2021

Summary of the NA64 runs at H4

Invisible mode configuration, first run 12.10-09.11 2016

- Run 2016 EOT ~ 4.5×10^{10} , S₀ rate 2÷4×10⁶;
- Run 2017 EOT ~ 5.4x10¹⁰, S₀ rate 4÷6x10⁶
- Run 2018 EOT ~ 1.9x10¹¹, S₀ rate 6÷8x10⁶
- Run 2021 EOT ~ 5.2x10¹⁰, S₀ rate 4÷5x10⁶
- Run 2022 EOT ~ 6.4x10¹¹, S₀ rate 5÷7x10⁶
- Run e⁺ 2022 EOT ~ 1.0x10¹⁰, S₀ rate 5÷7x10⁶
- Run 2023 EOT ~ 6.0x10¹¹, S₀ rate 5÷7x10⁶
- Total analysed electrons (2016 2022) ~ 9.37x10¹¹ eot
- Total accumulated (2016 2023) ~1.5x10¹² eot
- Visible mode configuration first run 22.09-01.10 2017
 - Subrun 1 WCAL 40X0 EOT ~ 2.4x10¹⁰, S₀ rate ~3x10⁶
 - Subrun 2 WCAL 30X0 EOT ~ 3x10¹⁰, S₀ rate 4-5x10⁶
 - Run 2018 S4 in WCAL EOT ~ 3x10¹⁰, beam 150 GeV
 - Total EOT ~ 8.4x10¹⁰

Simulation of eZ->eZA'; A'-> invisible @ BG

A emission in the process of e-m shower development. $\sigma(e^{-}Z \rightarrow e^{-}ZA')$ (Bjorken et al. 2009)

Search for Light Dark Matter in NA64 at the CERN SPS

DM processes simulation: DMG4

- Fully Geant4 compatible package DMG4 is developed arXiv:2101.12192 [hep-ph]. Can be used in any full simulation program based on the Geant4 toolkit
- Bremsstrahlung processes off electrons and muons (like eZ \rightarrow eZA[´]), gamma conversion to ALP, annihilation processes (like e⁺e⁻ \rightarrow A[´] \rightarrow $\chi\chi$) can be simulated
- DM messengers: vector (A´), axial vector, scalar, pseudoscalar, masses up to 3 GeV
- Invisible and visible (to SM particles) decays
- For the total cross section we use the full matrix element calculations (ETL) (arXiV:1712.05706 [hep-ph]) through the K-factors applied to the IWW cross sections. These K-factors can be as small as 1/15 for electrons at $M_A \sim 1$ GeV

DM processes simulation: DMG4(2)

- Simplified IWW approximation in e⁻⁺ beams for differential cross sections (messenger masses > 1 MeV), sufficient accuracy.
 Messenger energy and angle are sampled
- Tabulated e^{-+} beams differential cross section for masses < 1 MeV
- Recently implemented WW approximation in muon beams
 Complicated analytical integration. Messenger energy and recoil muon angle are sampled by default (needed in analysis, see below)
- WW formulas are now extended to scalar mediators
- Recently implemented: spin 2 messengers
- Recently implemented: semivisible decays of DM
- Presented at ACAT-2021 and ACAT-2022
- We continue to develop the package (convenience, new processes)

DMG4 muon beams: WW vs ETL

Single-differential cross-sections: vector case cross-check

ē

64

	Vector (V)		
Mass [MeV]	ETL [GeV ⁻²]	WW [GeV ⁻²]	rel. err. [%]
10	1.55e-07	1.56e-07	~0.2
100	2.42e-08	2.45e-08	~1
500	1.57e-09	1.62e-09	~4
1000	2.58e-10	2.74e-10	~6

How is this shape formed?

- Electron nuclear and gamma – nuclear interactions
- The main peak is cut off by trigger requirement E_{ECAL} < 85GeV

Analysis of data 2022

Background: example of extrapolation

Results. Most recent on A'.

arXiv 2307.02404

+ Resonant process: shower positrons on electrons of the target $e^+e^- \rightarrow A^- \rightarrow \chi\chi$ First addition to the analysis: **Phys. Rev. D 104, L091701** (2021)

Limits in "cosmological" variables with 2022 < data and sub-GeV Thermal Dark Matter models

$$\alpha_{\rm D} = 0.1, \ {\rm m}_{\rm A\times} = 3 {\rm m}_{\chi}$$

For $\alpha_D = 0.1$ we cover two models and touch the third

Less strict limits for $\alpha_D > 0.1$

Mikhail Kirsanov Search for Light Dark Matter in NA64 at the CERN SPS

Limits on generic boson and (g-2)_e

 $e^-Z \rightarrow e^-ZX; X \rightarrow invisible$

Consider also Scalar, Pseudoscalar, Axial vector Andreev et al. PRL 126, 211802 (2021)

Results (tension) on Δa_e : LKB +1.6 σ , Berkley -2.4 σ

New analysis, including the masses down to 1 KeV, Is in progress

Constraints on B-L Z' (decaying to SM particles)

Better sensitivity than neutrino experiments!

Phys. Rev. Lett. (2022)

Continue searches in invisible mode

- New subdetector VHCAL to suppress BG from beam elements and tracker
- Upgrade of DAQ
- Upgrade of electronics
- Upgrade of ECAL

Sensitivity to y and some popular sub-GeV Thermal Dark Matter models

How to improve sensitivity above 100 MeV?

- Annihilation. Additional positron run in 2022 (already analysed), two positron runs at 40 and 70 GeV in 2023
- NA64µ at the muon beam M2, later in this talk.

Analysed positron data 2022 preliminary, green dashed – expected from 2023 positrons

Additional region in positron beam is larger

Axion-like particles (ALP) coupled to photons

New way of using the invisible mode geometry: visible decays! Produced via Primakoff effect of gamma conversion on nuclei

ALP search strategy

- In addition to invisible decays beyond the detector (missing energy signature) look for decays in HCAL2, HCAL3 with HCAL1 as a veto
- Allows softer cuts on energy deposition in ECAL
- Background: punch-through neutrons and K⁰
- Final cut on R = (periphery cells)/(central cell), strong suppression of hadrons

ALP search results (data 2016 – 2018)

Search for new X-bosons and Dark Photons decaying to e⁺e⁻

ATOMKI anomaly

Compact tungsten calorimeter

WCAL

- X decays outside WCAL dump
- Signature: two separated showers from a single e-
 - E_{WC} < E_0 , and E_0 = E_{WC} + E_{EC}
 - θ_{e+e} too small to be resolved

Setup optimization

Second run (2018), with $3x10^{10}$ EOT was performed with the visible mode configuration optimized for bigger ε (short-lived X) and better background suppression: 150 GeV beam, veto counter inside WCAL box, vacuum decay tube, larger distance WCAL - ECAL

TOP VIEW, 2018 setup

We used control sample to estimate this BG: fully neutral events

We performed also a search for pseudoscalar bosons. Here, we used also data collected in the invisible mode configuration, similarly to the ALP search

Plans for the visible mode (2024?)

Full parameter space Invariant mass reconstruction

> For vector: cover ε up to 1.3 x 10⁻³ with 10¹² EOT

- New further optimized tungsten calorimeter WCAL
- Long decay tube
- Large area M
- Wide ECAL

Project described in EPJ C 80 12 1159 (2020)

NA64µ

	$\int i\chi^*\partial_\mu\chi + h.c.$	Complex Scalar
$I^{\mu} = a \times a$	$\overline{\chi}_1 \gamma^\mu \chi_2 + h.c.$	Pseudo–Dirac Fermion
$J_{\chi} = g_{\chi} \times v$	$\frac{1}{2}\overline{\chi}\gamma^{\mu}\gamma^{5}\chi$	Majorana Fermion
	$(\overline{\chi}\gamma^{\mu}\chi$	Dirac Fermion

Gninenko, Krasnikov 1801.10448 Kahn, Krnjaic, Tran, Whitbeck 1804.03144

Cross section for χ -DM annihilation: $\Gamma_{\text{inel}} = n_{\chi} < \sigma v >$

 $\sigma v \approx [(g_{\chi}g_{\mu})^{2}(m_{\chi}/m_{A^{2}})^{4}]/m_{\chi}^{2} = y/m_{\chi}^{2};$

 $y=[(g_{\chi}g_{\mu})^{2}(m_{\chi}/m_{A'})^{4}]$ useful variable to compare FTE sensitivities

Main components :

- 100-160 GeV $\mu\text{-}$ beam, $I_{\mu}{\sim}10^{7}\mu\text{/spill}.$
- in μ tagging: BMS+MS1(MBPL+tracker)
 - out μ tagging: MS2 (2MBPL+tracker)
 - 4π fully hermetic ECAL+Veto+ HCAL

Signature:

- in: 160 GeV $\mu\text{-}$ track
- out: < 80 GeV μ track (recoil)
- small energy in the ECAL, Veto, HCAL
 - Sensitivity ~ g_{μ}^{2}

NA64µ experiment setup, physics run 2023

Mikhail Kirsanov Search for Light Dark Matter in NA64 at the CERN SPS

Pilot runs on M2 in November 2021 and May 2022

- New wide HCAL
- New special ECAL

DMG4 simulation: we moved recently to WW cross sections, they are close to ETL, σ_{tot} and d σ /dXd ψ , Ψ – recoil muon angle

Pilot runs to check trigger rate and noise conditions ~4x10¹⁰ MOT

Using the experience from pilot runs we upgraded tracker and performed a physics run in 2023: ~2x10¹¹ MOT

Searches for A' with NA64 μ

Better sensitivity to heavy A' (>100 MeV)

Summary

- The NA64 experiment produced several important results in the search for light Dark Matter (mass less than ~1 GeV) coupled to electrons. For example, the explanation of the (g-2)_µ anomaly by A' is excluded
- These searches will be continued, the plan is to significantly increase the sensitivity and maximally cover the regions of thermal Dark Matter.
- One of the possibilities to improve sensitivity is to use positron beam (POKER project)
- The NA64µ experiment started in 2021. The purpose is to obtain more direct answer to the question about the (g-2)µ explanation by Dark Matter and to improve sensitivity to A' for the masses > 100 MeV.
- The searches for X(17) particle that could explain ATOMKI anomaly : new project ready, suspended for the time being
- Other planned searches are μ τ conversion, NA64h etc.

Backup slides

Backup

Dimuon production as a reference process

 There is an excellent reference process: gamma to muons conversion. It is rather rare and has many similarities with our signal

- Several 10⁴ dimuon pairs with both muons reaching all HCAL modules are registered in the 2016 runs
- The process is available in GEANT4, off by default
- We bias the cross section in GEANT4 by a factor of 200 in order to have good statistics with reasonable CPU time.
- Reasonable agreement DATA MC

Dimuon reconstruction

HCAL module 3

Left plot: number of dimuons in DATA ~ 0.92 of MC prediction, slightly smaller at high intensity -> efficiency correction

Analysis: efficiency corrections and uncertainties

Efficiency type	Method	Efficiency	uncertainty
Trigger and SRD selection, DAQ	Dimuons analysis	0.91	10%
VETO cut	Comparison MC - data in calib. runs	1	5%
HCAL cut	Comparison MC - data in calib. runs	0.99	5%

Veto: cut at 0.01 GeV

HCAL0: cut at 1 GeV

Analysis

- Data collected in the automn 2016 run are divided in 3 bins: low, medium and high intensity
- For each bin the background, efficiency corrections and their uncertainties are estimated
- The expected sensitivity was calculated with ProfileLikelihood method
- The limits are calculated with CL_S method

Final estimate of the background

Source of background	Events
e^+e^- pair production by punchthrough γ	< 0.001
$K_S^0 \to 2\pi^0; \pi^0 \to \gamma e^+ e^- \text{ or } \gamma \to e^+ e^-; K_S^0 \to \pi^+ \pi^-$	0.06 ± 0.034
$\pi N \to (\geq 1)\pi^0 + n +; \pi^0 \to \gamma e^+ e^- \text{ or } \gamma \to e^+ e^-$	0.01 ± 0.004
π^- hard bremsstrahlung in the WCAL , $\gamma \to e^+ e^-$	< 0.0001
$\pi, K \to e\nu, K_{e4}$ decays	< 0.001
$eZ \rightarrow eZ\mu^+\mu^-; \mu^\pm \rightarrow e^\pm \nu \nu$	< 0.001
punchthrough π	< 0.003
Total	0.07 ± 0.035

Results from 2017 run, 5.4x10¹⁰ EOT

Event selection 2018 at 150 GeV: criteria

- SRD tag (with only 2 modules because of smaller bend)
- $E_{WCAL} < 105 \text{ GeV}$ (preliminary trigger selection

E_{WCAL}< ~110 GeV)

- $E_{V2} < 0.6$ MIP (no charged particles after WCAL).
- E_{S4} > 1.5 MIP (two charged particles in ECAL). Control region for neutrals: E_{S4} < 0.7 MIP
- E_{WCAL} + E_{ECAL} > 125 GeV
- Shower profile in ECAL compatible with electron (or with two very close electrons)
- Small energy in VETO and HCAL