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Quasi-angular Heun's equation

The quantum-mechanical problem of a particle motion in the field of
two Coulomb centers with charges Z; and Z was investigated in two-
dimensional Euclidean space [1] and in two-dimensional Lobachevsky space
[2]. The Schradinger equation permits the separation of variables in both
cases. In [2], two-dimensional Lobachevsky space was embedded in three-
dimensional pseudo-Euclidean space. The separation of variables was realized
by introducing quasi-angular x and quasi-radial z coordinates with the help
of which a wave function can be written as ¥(z, z) = v(x)u(z). The quasi-
angular function v(z) was presented by the product

v(z) = (z—a)*" f(z)

and the function f(z) satisfies quasi-angular Heun's equation
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A parameter v is defined via a ol il
curvature radius p and a distance =
R between charges by means of the
formula

eBlr 41

= —, > 1. 2 00
V= me oy (2)

If R/p < 1 then v — 2p/R.
In the used measurement system,
Planck’'s constant, mass and charge
of a particle moving in the field are o 1
equal to unit. 00 02 04 06 08 10
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The presentation of solutions of the Heun's equation in the form of
various series of hypergeometric functions is well known [3, 4]. In [2], the
single expansion

oo

f@)="Y" ¢F(=j,j;1/2x) (3)

Jj=—o0

was considered. In the present paper, we examine two types of expansions in
series of hypergeometric functions which in the limit p — oo are converted
to expansions for even and odd solutions investigated in [1].
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Two expansions for solutions of quasi-angular equation

In accordance with [4], we obtain the expansion of the first type

fr(x) =) ¢ F(=j,j;1/2 ). (4)
§=0
The coefficients ¢; obey the recurrence relations
apcr + foco =0,  area + Bier + 2710 = 0, (5)
ajcipr+ Bic; + 561 =0, j>1, (6)

where
a; =2 +1—ds)(j +1—d_),

B = 3"+ A (7)

=26 -1+ )G~ 1+d).
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Here we introduce notations
dy =ay+a_, d-=ay—a_+1/2,

and A
v
= , €= 8
v +1 2(v2 +1) (8)
Note that the relation (6) coincides with relation derived in [2].
By applying substitution

f(z) = a'?(1 - )2 f(x)

we get the following Heun's equation

A

d*f (3 3 20, +1/2\df = (Az—p)f
dfr2+(2x+2(x—1) @—a) )cix+:zc(;v—1)(:c—cz)_0’ )
where
i _ A A
A:A+2a++3/2a p:a+a++1/4+§+ﬂ
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Now according to [4], we represent the function f(z) in the form of

expansion in hypergeometric functions
B oo
fl@) =) &GF(=j+1,j+1;3/2; ).
j=1

The coefficients ¢; satisfy the recurrence relations
Q163 + P16 =0,

&jCi1 + Bi6 + 4621 =0, j>1,

where )
- . . J
=2 +1—d)G+1—d )~
Qj 6(] +)(] )(]+1)
6] = _j2 +/\a
~ . . J
=2e(j—1+d —1+d_)— .

Hence, the second solution of Eq. (1) is given in the form of series of the

second type

f(z) = iéjxl/z(l — o) 2P (—j+1,j4+1;3/2;2).  (13)
j=1
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Emphasize that functions

yf () = F(=4,5:1/22), yy (x) = "2 (1—2) *F(—j+1, j+1;3/2; z)

(14)
are two linearly independent solutions of the hypergeometric equation
d?y 1 1 dy 52y
hullt- — 4 L L7 15
dm2+<2x+2(x—1))dac z(x—1) (15)
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Eigenvalues of the separation constant

The recurrence relations (5), (6) and (10), (11) allow us to obtain the
eigenvalues of A. In the case of small intercenter distance, when €2 —
R?/16p?, we find the expansions of A and A, for the first and second
solutions of Eq. (1) in powers of £2:

A =— (4E +822%) p*c®

—[(18E +3622) p* + (2E* — 24E2* — 562%) p*] €* + O (%),

2022
M=1- [6+(2E— 3‘),02] g

E?  242E7%  15267%
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— 4Z3 2| 2

51 ) E?  14EZ: 102N 4] 4 6

9/15



872
AN =4 {24+ <4E— 15‘) p2] g

227%\ , (5E? N 124F 72 N 173224
3 45 3375

— {102 + (17E - ) p4] et +0 (%

872
Ay =4— [24+ (4E— 15) p2:| e

272 E* T6EZ% 1268Z%
—{102+<19E—_>p2+<+ =+ _>p4}€4—|—0(66),

5 3 45 3375

10/15



atm > 2

872
/\i—m—[&n —|—<4E—42 ) ]
2 Z2
[51m +<18E 6 >
2
p
2

24EZ%  8(20m? +7)Z4
_ 2
<2E toa gt @m? 1) ) _}a +0 (£%).

Indexing of the eigenvalues is realized by means of number m. The
obtained eigenvalues of separation constant are converted to eigenvalues
derived in [1] in the case of the Euclidean space if we perform the limiting
procedure (p — o0) in our formulas. On the other hand, if we reject terms

proportional to & in obtained eigenvalues A then we get eigenvalues
derived in [2].
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Comparison with the Euclidean case

Let us remark that the functions yj' and y;~ can be expressed via the
Chebyshev polynomials of the first and second kind [5]:

i @) =T =20,y (@) =1 - 222

This circumstance is the sufficient reason to introduce new angular variable
0 with the help of the formula

cos(f) =1 — 2z. (16)

We find that expansions of two solutions of Eq. (1) are presented as series
of the trigonometrical functions
sin(j6)

i (0) = costi0). 45 (0) = 5 (17

From here it is seen that expansions (4) and (13) in the case of the
Lobachevsky space are analogues of expansions used in the case of the
Euclidean space [1].
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It should be stressed that the hypergeometric equation (15) acquires the
simplest form

d*y
T a0z 7%y (18)
if we use variable 6. Eq. (1) is transformed in the following way
f _odf
(—1+4e cos(@))ﬁ—4€(2a++1/2) sm(&)w—%/l cos(8)f = Af. (19)
In the limit p — oo, Eq. (19) is converted to equation
2
- % — R(—2E)Y/? sin(@)% — R((—2E)Y2/2 4+ Z_) cos(0) f = \f,
(20)

coinciding with the equation considered in [1] in the case of the Euclidean
space.
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Conclusion

Two solutions of the quasi-angular equation in the two Coulomb centers
problem in the two-dimensional Lobachevsky space have been obtained
in the form of two series of hypergeometric functions. These results are
the essential addition to the results presented in [2]. It is shown that the
solutions in the case of the Euclidean space [1] can be obtained from our
solutions in the limit p — oo. At last, we intend to use derived eigenvalues
of the separation constant for solution of the quasi-radial equation and for
calculation of the energy spectrum.
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