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Quasi-angular Heun’s equation
The quantum-mechanical problem of a particle motion in the field of

two Coulomb centers with charges Z1 and Z2 was investigated in two-
dimensional Euclidean space [1] and in two-dimensional Lobachevsky space
[2]. The Schrödinger equation permits the separation of variables in both
cases. In [2], two-dimensional Lobachevsky space was embedded in three-
dimensional pseudo-Euclidean space. The separation of variables was realized
by introducing quasi-angular x and quasi-radial z coordinates with the help
of which a wave function can be written as Ψ(x, z) = v(x)u(z). The quasi-
angular function v(x) was presented by the product

v(x) = (x− a)α+f(x)

and the function f(x) satisfies quasi-angular Heun’s equation

d2f

dx2
+

(
1

2x
+

1

2(x− 1)
+

2α+ + 1/2

(x− a)

)
d f

dx
+

(Ax− p)f
x(x− 1)(x− a)

= 0. (1)

Here E is energy, Λ is separation constant and

Z− = Z2−Z1, α± =
1

4

(
1 +

√
−8Eρ2 ± 8Z−ρ+ 1

)
, a = − (γ − 1)2

4γ
,

A = (α+ + α−)(α+ − α− + 1/2) = α+ + Z−ρ, p =
A

2
+

Λ

4γ
.
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A parameter γ is defined via a
curvature radius ρ and a distance
R between charges by means of the
formula

γ =
eR/ρ + 1

eR/ρ − 1
, γ > 1. (2)

If R/ρ � 1 then γ → 2ρ/R.
In the used measurement system,
Planck’s constant, mass and charge
of a particle moving in the field are
equal to unit. 0.0 0.2 0.4 0.6 0.8 1.0
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The presentation of solutions of the Heun’s equation in the form of
various series of hypergeometric functions is well known [3, 4]. In [2], the
single expansion

f(x) =

∞∑
j=−∞

cjF (−j, j; 1/2;x) (3)

was considered. In the present paper, we examine two types of expansions in
series of hypergeometric functions which in the limit ρ→∞ are converted
to expansions for even and odd solutions investigated in [1].
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Two expansions for solutions of quasi-angular equation

In accordance with [4], we obtain the expansion of the first type

f+(x) =

∞∑
j=0

cjF (−j, j; 1/2;x). (4)

The coefficients cj obey the recurrence relations

α0c1 + β0c0 = 0, α1c2 + β1c1 + 2γ1c0 = 0, (5)

αjcj+1 + βjcj + γjcj−1 = 0, j > 1, (6)

where
αj = 2ε(j + 1− d+)(j + 1− d−),

βj = −j2 + λ,

γj = 2ε(j − 1 + d+)(j − 1 + d−).

(7)
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Here we introduce notations

d+ = α+ + α−, d− = α+ − α− + 1/2,

and
λ =

Λ

γ2 + 1
, ε =

γ

2(γ2 + 1)
(8)

Note that the relation (6) coincides with relation derived in [2].
By applying substitution

f(x) = x1/2(1− x)1/2f̃(x)

we get the following Heun’s equation

d2f̃

dx2
+

(
3

2x
+

3

2(x− 1)
+

2α+ + 1/2

(x− a)

)
d f̃

dx
+

(Ãx− p̃)f̃
x(x− 1)(x− a)

= 0, (9)

where

Ã = A+ 2α+ + 3/2, p̃ = a+ α+ + 1/4 +
A

2
+

Λ

4γ
.
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Now according to [4], we represent the function f̃(x) in the form of
expansion in hypergeometric functions

f̃(x) =

∞∑
j=1

c̃jF (−j + 1, j + 1; 3/2;x).

The coefficients c̃j satisfy the recurrence relations

α̃1c̃2 + β̃1c̃1 = 0, (10)

α̃j c̃j+1 + β̃j c̃j + γ̃j c̃j−1 = 0, j > 1, (11)
where

α̃j = 2ε(j + 1− d+)(j + 1− d−)
j

(j + 1)
,

β̃j = −j2 + λ,

γ̃j = 2ε(j − 1 + d+)(j − 1 + d−)
j

(j − 1)
.

(12)

Hence, the second solution of Eq. (1) is given in the form of series of the
second type

f−(x) =
∞∑
j=1

c̃jx
1/2(1− x)1/2F (−j + 1, j + 1; 3/2;x). (13)
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Emphasize that functions

y+j (x) = F (−j, j; 1/2;x), y−j (x) = x1/2(1−x)1/2F (−j+1, j+1; 3/2;x)
(14)

are two linearly independent solutions of the hypergeometric equation

d2y

dx2
+

(
1

2x
+

1

2(x− 1)

)
dy

dx
− j2y

x(x− 1)
= 0. (15)
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Eigenvalues of the separation constant
The recurrence relations (5), (6) and (10), (11) allow us to obtain the

eigenvalues of λ. In the case of small intercenter distance, when ε2 →
R2/16ρ2, we find the expansions of λ+m and λ−m for the first and second
solutions of Eq. (1) in powers of ε2:

λ+0 = −
(
4E + 8Z2

−
)
ρ2ε2

−
[(

18E + 36Z2
−
)
ρ2 +

(
2E2 − 24EZ2

− − 56Z4
−
)
ρ4
]
ε4 +O

(
ε6
)
,

λ+1 = 1−
[
6 +

(
2E −

20Z2
−

3

)
ρ2
]
ε2

−
[

51

2
+
(
10E − 28Z2

−
)
ρ2 +

(
E2

2
+

242EZ2
−

9
+

1526Z4
−

27

)
ρ4
]
ε4 +O

(
ε6
)
,

λ−1 = 1−
[
6 +

(
6E +

4Z2
−

3

)
ρ2
]
ε2

−
[

51

2
+
(
26E + 4Z2

−
)
ρ2 +

(
E2

2
−

14EZ2
−

9
−

10Z4
−

27

)
ρ4
]
ε4 +O

(
ε6
)
,
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λ+2 = 4−
[
24 +

(
4E −

8Z2
−

15

)
ρ2
]
ε2

−
[
102 +

(
17E −

22Z2
−

5

)
ρ2 −

(
5E2

3
+

124EZ2
−

45
+

1732Z4
−

3375

)
ρ4
]
ε4 +O

(
ε6
)
,

λ−2 = 4−
[
24 +

(
4E −

8Z2
−

15

)
ρ2
]
ε2

−
[
102 +

(
19E −

2Z2
−

5

)
ρ2 +

(
E2

3
+

76EZ2
−

45
+

1268Z4
−

3375

)
ρ4
]
ε4 +O

(
ε6
)
,
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at m > 2

λ±m = m2 −
[
6m2 +

(
4E −

8Z2
−

4m2 − 1

)
ρ2
]
ε2

−
[

51m2

2
+

(
18E −

36Z2
−

4m2 − 1

)
ρ2

−
(

2E2 +
24EZ2

−
4m2 − 1

+
8(20m2 + 7)Z4

−
(4m2 − 1)3

)
ρ4

m2 − 1

]
ε4 +O

(
ε6
)
.

Indexing of the eigenvalues is realized by means of number m. The
obtained eigenvalues of separation constant are converted to eigenvalues
derived in [1] in the case of the Euclidean space if we perform the limiting
procedure (ρ→∞) in our formulas. On the other hand, if we reject terms
proportional to ε4 in obtained eigenvalues λ+m then we get eigenvalues
derived in [2].
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Comparison with the Euclidean case
Let us remark that the functions y+j and y−j can be expressed via the

Chebyshev polynomials of the first and second kind [5]:

y+j (x) = Tj(1− 2x), y−j (x) = x1/2(1− x)1/2
Uj−1(1− 2x)

j
.

This circumstance is the sufficient reason to introduce new angular variable
θ with the help of the formula

cos(θ) = 1− 2x. (16)

We find that expansions of two solutions of Eq. (1) are presented as series
of the trigonometrical functions

y+j (θ) = cos(jθ), y−j (θ) =
sin(jθ)

2j
. (17)

From here it is seen that expansions (4) and (13) in the case of the
Lobachevsky space are analogues of expansions used in the case of the
Euclidean space [1].
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It should be stressed that the hypergeometric equation (15) acquires the
simplest form

− d2y

dθ2
= j2y (18)

if we use variable θ. Eq. (1) is transformed in the following way

(−1+4ε cos(θ))
d2f

dθ2
−4ε(2α++1/2) sin(θ)

d f

dθ
−4εA cos(θ)f = λf. (19)

In the limit ρ→∞, Eq. (19) is converted to equation

− d2f

dθ2
−R(−2E)1/2 sin(θ)

d f

dθ
−R((−2E)1/2/2 + Z−) cos(θ)f = λf,

(20)
coinciding with the equation considered in [1] in the case of the Euclidean
space.
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Conclusion

Two solutions of the quasi-angular equation in the two Coulomb centers
problem in the two-dimensional Lobachevsky space have been obtained
in the form of two series of hypergeometric functions. These results are
the essential addition to the results presented in [2]. It is shown that the
solutions in the case of the Euclidean space [1] can be obtained from our
solutions in the limit ρ→∞. At last, we intend to use derived eigenvalues
of the separation constant for solution of the quasi-radial equation and for
calculation of the energy spectrum.
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