Solution of the Schrödinger equation in the two Coulomb centers problem in the two-dimensions Lobachevsky space

A.V. Baran ${ }^{1}$, V.V. Kudryashov ${ }^{2}$
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus 68 Nezavisimosti Ave., 220072, Minsk, Belarus

[^0]
Quasi-angular Heun's equation

The quantum-mechanical problem of a particle motion in the field of two Coulomb centers with charges Z_{1} and Z_{2} was investigated in twodimensional Euclidean space [1] and in two-dimensional Lobachevsky space [2]. The Schrödinger equation permits the separation of variables in both cases. In [2], two-dimensional Lobachevsky space was embedded in threedimensional pseudo-Euclidean space. The separation of variables was realized by introducing quasi-angular x and quasi-radial z coordinates with the help of which a wave function can be written as $\Psi(x, z)=v(x) u(z)$. The quasiangular function $v(x)$ was presented by the product

$$
v(x)=(x-a)^{\alpha_{+}} f(x)
$$

and the function $f(x)$ satisfies quasi-angular Heun's equation

$$
\begin{equation*}
\frac{d^{2} f}{d x^{2}}+\left(\frac{1}{2 x}+\frac{1}{2(x-1)}+\frac{2 \alpha_{+}+1 / 2}{(x-a)}\right) \frac{d f}{d x}+\frac{(A x-p) f}{x(x-1)(x-a)}=0 . \tag{1}
\end{equation*}
$$

Here E is energy, Λ is separation constant and

$$
\begin{gathered}
Z_{-}=Z_{2}-Z_{1}, \quad \alpha_{ \pm}=\frac{1}{4}\left(1+\sqrt{-8 E \rho^{2} \pm 8 Z_{-} \rho+1}\right), \quad a=-\frac{(\gamma-1)^{2}}{4 \gamma} \\
A=\left(\alpha_{+}+\alpha_{-}\right)\left(\alpha_{+}-\alpha_{-}+1 / 2\right)=\alpha_{+}+Z_{-} \rho, \quad p=\frac{A}{2}+\frac{\Lambda}{4 \gamma} .
\end{gathered}
$$

A parameter γ is defined via a curvature radius ρ and a distance R between charges by means of the formula

$$
\begin{equation*}
\gamma=\frac{e^{R / \rho}+1}{e^{R / \rho}-1}, \quad \gamma>1 \tag{2}
\end{equation*}
$$

If $R / \rho \ll 1$ then $\gamma \rightarrow 2 \rho / R$. In the used measurement system, Planck's constant, mass and charge of a particle moving in the field are equal to unit.

The presentation of solutions of the Heun's equation in the form of various series of hypergeometric functions is well known [3, 4]. In [2], the single expansion

$$
\begin{equation*}
f(x)=\sum_{j=-\infty}^{\infty} c_{j} F(-j, j ; 1 / 2 ; x) \tag{3}
\end{equation*}
$$

was considered. In the present paper, we examine two types of expansions in series of hypergeometric functions which in the limit $\rho \rightarrow \infty$ are converted to expansions for even and odd solutions investigated in [1].

Two expansions for solutions of quasi-angular equation

In accordance with [4], we obtain the expansion of the first type

$$
\begin{equation*}
f^{+}(x)=\sum_{j=0}^{\infty} c_{j} F(-j, j ; 1 / 2 ; x) \tag{4}
\end{equation*}
$$

The coefficients c_{j} obey the recurrence relations

$$
\begin{gather*}
\alpha_{0} c_{1}+\beta_{0} c_{0}=0, \quad \alpha_{1} c_{2}+\beta_{1} c_{1}+2 \gamma_{1} c_{0}=0 \tag{5}\\
\alpha_{j} c_{j+1}+\beta_{j} c_{j}+\gamma_{j} c_{j-1}=0, \quad j>1 \tag{6}
\end{gather*}
$$

where

$$
\begin{gather*}
\alpha_{j}=2 \varepsilon\left(j+1-d_{+}\right)\left(j+1-d_{-}\right), \\
\beta_{j}=-j^{2}+\lambda, \tag{7}\\
\gamma_{j}=2 \varepsilon\left(j-1+d_{+}\right)\left(j-1+d_{-}\right) .
\end{gather*}
$$

Here we introduce notations

$$
d_{+}=\alpha_{+}+\alpha_{-}, \quad d_{-}=\alpha_{+}-\alpha_{-}+1 / 2,
$$

and

$$
\begin{equation*}
\lambda=\frac{\Lambda}{\gamma^{2}+1}, \quad \varepsilon=\frac{\gamma}{2\left(\gamma^{2}+1\right)} \tag{8}
\end{equation*}
$$

Note that the relation (6) coincides with relation derived in [2].
By applying substitution

$$
f(x)=x^{1 / 2}(1-x)^{1 / 2} \tilde{f}(x)
$$

we get the following Heun's equation

$$
\begin{equation*}
\frac{d^{2} \tilde{f}}{d x^{2}}+\left(\frac{3}{2 x}+\frac{3}{2(x-1)}+\frac{2 \alpha_{+}+1 / 2}{(x-a)}\right) \frac{d \tilde{f}}{d x}+\frac{(\tilde{A} x-\tilde{p}) \tilde{f}}{x(x-1)(x-a)}=0 \tag{9}
\end{equation*}
$$

where

$$
\tilde{A}=A+2 \alpha_{+}+3 / 2, \quad \tilde{p}=a+\alpha_{+}+1 / 4+\frac{A}{2}+\frac{\Lambda}{4 \gamma} .
$$

Now according to [4], we represent the function $\tilde{f}(x)$ in the form of expansion in hypergeometric functions

$$
\tilde{f}(x)=\sum_{j=1}^{\infty} \tilde{c}_{j} F(-j+1, j+1 ; 3 / 2 ; x)
$$

The coefficients \tilde{c}_{j} satisfy the recurrence relations

$$
\begin{gather*}
\tilde{\alpha}_{1} \tilde{c}_{2}+\tilde{\beta}_{1} \tilde{c}_{1}=0 \tag{10}\\
\tilde{\alpha}_{j} \tilde{c}_{j+1}+\tilde{\beta}_{j} \tilde{c}_{j}+\tilde{\gamma}_{j} \tilde{c}_{j-1}=0, \quad j>1 \tag{11}
\end{gather*}
$$

where

$$
\begin{gather*}
\tilde{\alpha}_{j}=2 \varepsilon\left(j+1-d_{+}\right)\left(j+1-d_{-}\right) \frac{j}{(j+1)}, \\
\tilde{\beta}_{j}=-j^{2}+\lambda, \tag{12}\\
\tilde{\gamma}_{j}=2 \varepsilon\left(j-1+d_{+}\right)\left(j-1+d_{-}\right) \frac{j}{(j-1)} .
\end{gather*}
$$

Hence, the second solution of Eq. (1) is given in the form of series of the second type

$$
\begin{equation*}
f^{-}(x)=\sum_{j=1}^{\infty} \tilde{c}_{j} x^{1 / 2}(1-x)^{1 / 2} F(-j+1, j+1 ; 3 / 2 ; x) \tag{13}
\end{equation*}
$$

Emphasize that functions

$$
\begin{equation*}
y_{j}^{+}(x)=F(-j, j ; 1 / 2 ; x), \quad y_{j}^{-}(x)=x^{1 / 2}(1-x)^{1 / 2} F(-j+1, j+1 ; 3 / 2 ; x) \tag{14}
\end{equation*}
$$

are two linearly independent solutions of the hypergeometric equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\left(\frac{1}{2 x}+\frac{1}{2(x-1)}\right) \frac{d y}{d x}-\frac{j^{2} y}{x(x-1)}=0 . \tag{15}
\end{equation*}
$$

Eigenvalues of the separation constant

The recurrence relations (5), (6) and (10), (11) allow us to obtain the eigenvalues of λ. In the case of small intercenter distance, when $\varepsilon^{2} \rightarrow$ $R^{2} / 16 \rho^{2}$, we find the expansions of λ_{m}^{+}and λ_{m}^{-}for the first and second solutions of Eq. (1) in powers of ε^{2} :

$$
\begin{gathered}
\lambda_{0}^{+}=-\left(4 E+8 Z_{-}^{2}\right) \rho^{2} \varepsilon^{2} \\
-\left[\left(18 E+36 Z_{-}^{2}\right) \rho^{2}+\left(2 E^{2}-24 E Z_{-}^{2}-56 Z_{-}^{4}\right) \rho^{4}\right] \varepsilon^{4}+O\left(\varepsilon^{6}\right), \\
\lambda_{1}^{+}=1-\left[6+\left(2 E-\frac{20 Z_{-}^{2}}{3}\right) \rho^{2}\right] \varepsilon^{2} \\
-\left[\frac{51}{2}+\left(10 E-28 Z_{-}^{2}\right) \rho^{2}+\left(\frac{E^{2}}{2}+\frac{242 E Z_{-}^{2}}{9}+\frac{1526 Z_{-}^{4}}{27}\right) \rho^{4}\right] \varepsilon^{4}+O\left(\varepsilon^{6}\right), \\
\lambda_{1}^{-}=1-\left[6+\left(6 E+\frac{4 Z_{-}^{2}}{3}\right) \rho^{2}\right] \varepsilon^{2} \\
-\left[\frac{51}{2}+\left(26 E+4 Z_{-}^{2}\right) \rho^{2}+\left(\frac{E^{2}}{2}-\frac{14 E Z_{-}^{2}}{9}-\frac{10 Z_{-}^{4}}{27}\right) \rho^{4}\right] \varepsilon^{4}+O\left(\varepsilon^{6}\right),
\end{gathered}
$$

$$
\begin{gathered}
\lambda_{2}^{+}=4-\left[24+\left(4 E-\frac{8 Z_{-}^{2}}{15}\right) \rho^{2}\right] \varepsilon^{2} \\
-\left[102+\left(17 E-\frac{22 Z_{-}^{2}}{5}\right) \rho^{2}-\left(\frac{5 E^{2}}{3}+\frac{124 E Z_{-}^{2}}{45}+\frac{1732 Z_{-}^{4}}{3375}\right) \rho^{4}\right] \varepsilon^{4}+O\left(\varepsilon^{6}\right) \\
\lambda_{2}^{-}=4-\left[24+\left(4 E-\frac{8 Z_{-}^{2}}{15}\right) \rho^{2}\right] \varepsilon^{2} \\
-\left[102+\left(19 E-\frac{2 Z_{-}^{2}}{5}\right) \rho^{2}+\left(\frac{E^{2}}{3}+\frac{76 E Z_{-}^{2}}{45}+\frac{1268 Z_{-}^{4}}{3375}\right) \rho^{4}\right] \varepsilon^{4}+O\left(\varepsilon^{6}\right),
\end{gathered}
$$

```
at m>2
```

$$
\begin{gathered}
\lambda_{m}^{ \pm}= \\
m^{2}-\left[6 m^{2}+\left(4 E-\frac{8 Z_{-}^{2}}{4 m^{2}-1}\right) \rho^{2}\right] \varepsilon^{2} \\
-\left[\frac{51 m^{2}}{2}+\left(18 E-\frac{36 Z_{-}^{2}}{4 m^{2}-1}\right) \rho^{2}\right. \\
\left.-\left(2 E^{2}+\frac{24 E Z_{-}^{2}}{4 m^{2}-1}+\frac{8\left(20 m^{2}+7\right) Z_{-}^{4}}{\left(4 m^{2}-1\right)^{3}}\right) \frac{\rho^{4}}{m^{2}-1}\right] \varepsilon^{4}+O\left(\varepsilon^{6}\right) .
\end{gathered}
$$

Indexing of the eigenvalues is realized by means of number m. The obtained eigenvalues of separation constant are converted to eigenvalues derived in [1] in the case of the Euclidean space if we perform the limiting procedure $(\rho \rightarrow \infty)$ in our formulas. On the other hand, if we reject terms proportional to ε^{4} in obtained eigenvalues λ_{m}^{+}then we get eigenvalues derived in [2].

Comparison with the Euclidean case

Let us remark that the functions y_{j}^{+}and y_{j}^{-}can be expressed via the Chebyshev polynomials of the first and second kind [5]:

$$
y_{j}^{+}(x)=T_{j}(1-2 x), \quad y_{j}^{-}(x)=x^{1 / 2}(1-x)^{1 / 2} \frac{U_{j-1}(1-2 x)}{j}
$$

This circumstance is the sufficient reason to introduce new angular variable θ with the help of the formula

$$
\begin{equation*}
\cos (\theta)=1-2 x \tag{16}
\end{equation*}
$$

We find that expansions of two solutions of Eq. (1) are presented as series of the trigonometrical functions

$$
\begin{equation*}
y_{j}^{+}(\theta)=\cos (j \theta), \quad y_{j}^{-}(\theta)=\frac{\sin (j \theta)}{2 j} . \tag{17}
\end{equation*}
$$

From here it is seen that expansions (4) and (13) in the case of the Lobachevsky space are analogues of expansions used in the case of the Euclidean space [1].

It should be stressed that the hypergeometric equation (15) acquires the simplest form

$$
\begin{equation*}
-\frac{d^{2} y}{d \theta^{2}}=j^{2} y \tag{18}
\end{equation*}
$$

if we use variable θ. Eq. (1) is transformed in the following way

$$
\begin{equation*}
(-1+4 \varepsilon \cos (\theta)) \frac{d^{2} f}{d \theta^{2}}-4 \varepsilon\left(2 \alpha_{+}+1 / 2\right) \sin (\theta) \frac{d f}{d \theta}-4 \varepsilon A \cos (\theta) f=\lambda f . \tag{19}
\end{equation*}
$$

In the limit $\rho \rightarrow \infty$, Eq. (19) is converted to equation

$$
\begin{equation*}
-\frac{d^{2} f}{d \theta^{2}}-R(-2 E)^{1 / 2} \sin (\theta) \frac{d f}{d \theta}-R\left((-2 E)^{1 / 2} / 2+Z_{-}\right) \cos (\theta) f=\lambda f, \tag{20}
\end{equation*}
$$

coinciding with the equation considered in [1] in the case of the Euclidean space.

Conclusion

Two solutions of the quasi-angular equation in the two Coulomb centers problem in the two-dimensional Lobachevsky space have been obtained in the form of two series of hypergeometric functions. These results are the essential addition to the results presented in [2]. It is shown that the solutions in the case of the Euclidean space [1] can be obtained from our solutions in the limit $\rho \rightarrow \infty$. At last, we intend to use derived eigenvalues of the separation constant for solution of the quasi-radial equation and for calculation of the energy spectrum.

D．I．Bondar，M．Hnatich and V．Yu．Lazur．Two－dimensional problem of two Coulomb centers at small intercenter distances，Theor．Math． Phys．148， 1100 － 1116 （2006）．
園 V．S．Otchik．Problem of two Coulomb centers on the Lobachevsky plane．Covariant Methods in Theoretical Physics．Minsk，111－116 （2005）．（in Russian）．
囯 A．Ronveaux．Heun＇s differential equations．Oxford，Oxford University Press，1995， 354 p．
目 S．Yu．Slavyanov and W．Lay．Special functions：A Unified Theory Based on Singularities．Oxford，Oxford Universaty Press，2000， 312 p．
（in M．Abramovitz and I．A．Stegun．Handbook of Mathematical Function． New York，Dover Publications，1970， 1044 p．

[^0]: ${ }^{1}$ E-mail: a.baran@dragon.bas-net.by
 ${ }^{2}$ E-mail: kudryash@dragon.bas-net.by

