Однопетлевые радиационныя поправки к лептонному току в полуинклюзивном глубоконеупругом рассеянии поляризованных частиц: точный расчёт и приближение ведущих логарифмов

> А.Н. Ильичёв НИИ ЯП БГУ, Минск, 220088 Беларусь

> > 1 сентября 2023 г.

Полуинклюзивное глубоконеупругое рассеяние поляризованных частиц

Эксклюзивный порог определяется $M_X^2 = (p + q - P_h)^2$: $M_X^2 > (M_N + m_\pi)^2$ – полуинклюзивный процесс $M_X^2 < (M_N + m_\pi)^2$ – эксклюзивный процесс

Углы и вектор поляризации мишени

Приближение однофотонного обмена

Сечение процесса

$$\vec{l}(k_1,\xi) + \vec{N}(p,\eta) \rightarrow l'(k_2) + h(P_h) + X(p_X)$$

имеет вид:

$$d\sigma = \frac{(4\pi\alpha)^2}{4q^4\sqrt{(k_1\cdot p) - M_N^2 m_l^2}} L^{\mu\nu} W_{\mu\nu} (2\pi)^4 \frac{d^3k_2}{(2\pi)^3 2k_{20}} \frac{d^3 P_h}{(2\pi)^3 2P_{h0}}$$

Лептонный тензор хорошо известен:

$$L^{\mu
u} = rac{1}{2} {
m Tr}[(\hat{k}_2 + m_l) \gamma_\mu (\hat{k}_1 + m_l) (1 + \gamma_5 \hat{\xi}) \gamma_
u]$$

Адронный тензор имеет более сложную структуру.

Модельно-независимая электромагнитная поправка низшего порядка *ер* → *ehX*

Исследуемый вклад низшего порядка.

- Излучение реального фотонов из лептонной линии с неупругим конечным адронным состоянием.
 Содержит инфракрасную расходимость.
- Излучение реального фотонов из лептонной линии с эксклюзивным конечным адронным состоянием. Не содержит инфракрасную расходимость.
- Вклад дополнительный виртуальных частиц. Последний график содержит инфракрасную расходимость.

Преимущества модельно-независимой поправки

- Задача может быть решена точно.
- Вклад модельно-независимой поправка довольно значительный из-за наличия так называемого лидирующего логарифма log(Q²/m²).
- Неопределенности в модель-независимой поправке возникают только от продгонок и моделей, используемых для структурных функций.
- Расчеты модельно-зависимых поправок (двухфотонный обмен, излучение реальных фотонов из адронной линии) требует дополнительного предположения об адронном взаимодействии, поэтому они имеет дополнительные чисто теоретические неопределенности, которые трудно контролировать.

Расчеты выполненные ранее

Без учета эксклюзивного радиационного хвоста • поправки к неполяризованному трехмерному сечению dxdvdz А.В. Сороко, Н.М. Шумейко. ЯФ. 49 (1989) 1348-1358 поправки к поляризованному трехмерному сечению А.В. Сороко, Н.М. Шумейко.. ЯФ. 53 (1991) 1015-1020 являются опцией SIRAD ФОРТРАН кода POLRAD 2.0 I.Akushevich, et al. Comp.Phys.Comm. 104 (1997) 201-244 $d\sigma$ поправки к неполяризованному пятимерному сечению $dxdvdzd\phi_h dp_t$ I.Akushevich, N.Shumeiko, A.Soroko. Eur.Phys.J. C10 (1999) 681-687 явились основой для создания ФОРТРАН кода HAPRAD. КХД и КЭД поправки к поляризованному пятимерному сечению $d\sigma$ $dxdydzd\phi_h dp_t$

T. Liu, W. Melnitchouk, J. W. Qiu and N. Sato, JHEP 11, 157 (2021)

Расчеты выполненные ранее

С учетом эксклюзивного радиационного хвоста

 Вклад эксклюзивного радиационного хвоста в пятимерномое сечение *d* σ
 d σ
 d σ
 d σ
 i.Akushevich, A.llyichev, M.Osipenko. Eur.Phys.J. C10 (1999) 681-687 и включен в ФОРТРАН код НАРКАD.

Адронный тензор и структурные функции в поляризованном полуинклюзивном рассеянии

Ключевым моментом при численной оценки модельно-независимых поправок является знание структуры адронного тензора, а также параметризации структурной функции. в достаточно широкой кинематической области как для полуинклюзивного, так и для эксклюзивного процессов.

Согласно работе Aram Kotzinian. Nucl.Phys. B441 (1995) 234-248 адронной тензор для полуинклюзивного процесса с начальным поляризованным нуклоном имеет вид:

$$W_{\mu
u} = \sum_{a,b=0}^{3} e^{\gamma(a)}_{\mu} e^{\gamma(b)}_{
u} (H^{(0)}_{ab} + \sum_{
ho,i=0}^{3} \eta^{
ho} e^{h(i)}_{
ho} H^{(S)}_{abi}).$$

 $e^{\gamma(a,b)} (e^{h(i)})$ являются полным набором базисных векторов для поляризации 4-векторов виртуального фотона (нуклона) в системе покоя нуклона. Однако, при учете законов сохрания четности и тока, эрмитовости и $p\eta \equiv 0$ остается только 5 спин-независимых $H_{ab}^{(0)}$ и 13 спин-зависимых $H_{ab}^{(S)}$ структурных функций. Все остальные структурные функции пологаются равными нулю. Адронный тензор и структурные функции в поляризованном полуинклюзивном рассеянии

Другой набор структурных функций можно найти в A. Bacchetta et al. JHEP 0702 (2007) 093

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dp_t^2} = \frac{\alpha^2}{xy\,Q^2}\,\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h}\right\}$$

$$\begin{split} &+\varepsilon\cos(2\phi_{h})\,F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}}\\ &+\mathrm{S}_{\parallel}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})\,F_{UL}^{\sin2\phi_{h}}\right]\\ &+\mathrm{S}_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL}+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{UL}^{\cos\phi_{h}}\right]\\ &+|\mathrm{S}_{\perp}|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon\,F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right.\\ &+\varepsilon\sin(\phi_{h}+\phi_{S})\,F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})\,F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\\ &+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h}-\phi_{S})\,F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\right]\\ &+|\mathrm{S}_{\perp}|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h}-\phi_{S})\,F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos\phi_{S}}\right.\\ &+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_{h}-\phi_{S})\,F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\Big\} \end{split}$$

Эксклюзивные инвариантные амплитуды

вклад эксклюзивного радиационного хвоста $d\sigma_R^{ex} \sim W_{ex}^{\mu\nu} L_{\mu\nu}^R d\Gamma_R^{ex}$, выражается через шесть инвариантных амплитуд A_i

F. A. Berends, A. Donnachie and D. L. Weaver, Nucl. Phys. B 4, 1-53 (1967), которые могут быть извлечены из MAID 2007. $\mathcal{M}^{\mu} = \bar{u}(p_u) \left(\sum_{i=1}^6 A_i \Gamma_i^{\mu}\right) u(P)$ $\Gamma_1^\mu = -rac{1}{2}\gamma_5\left(\gamma^\mu \hat{q} - \hat{q}\gamma^\mu
ight),$ $\Gamma_2^{\mu} = 2i\gamma_5 \left[P^{\mu}q \cdot \left(P_h - \frac{1}{2}q \right) - \left(P_h^{\mu} - \frac{1}{2}q^{\mu} \right)q \cdot P \right],$ $\Gamma_{2}^{\mu} = -i\gamma_{5}\left(\gamma^{\mu}\boldsymbol{q}\cdot\boldsymbol{P}_{h}-\hat{\boldsymbol{q}}\boldsymbol{P}_{h}^{\mu}\right),$ $\Gamma_{\Lambda}^{\mu} = -2i\gamma_5 \left(\gamma^{\mu} q \cdot P - \hat{q} P^{\mu}\right) - 2m_N \Gamma_1^{\mu},$ $\Gamma_{5}^{\mu}=i\gamma_{5}\left(q^{\mu}q\cdot P_{b}-P_{b}^{\mu}q^{2}\right),$ $\Gamma^{\mu}_{\epsilon} = -i\gamma_5 \left(\hat{q}q^{\mu} - \gamma^{\mu}q^2\right).$

Эксклюзивные структурные функции

Эксклюзивный адронный тензор:

 $W_{ex}^{\mu\nu} = -\frac{1}{8\pi\alpha} \text{Tr} \left[\Gamma_{ex}^{\mu}(\rho + M)(1 + \gamma_5 \eta) \overline{\Gamma}_{ex}^{\mu}(\rho_u + M) \right]$ имеет ту же структуру, что и полуинклюзивный. Однако, для компактного представления используется другой набор из шести амплитуд Чу-Голдбергера-Лоу-Намбу \mathcal{F}_i G. F. Chew, M. L. Goldberger, F. E. Low and Y. Nambu, Phys. Rev. 106 (1957), 1337-1344

$$\epsilon_{\mu} \bar{u}(p_{u}) \left(\sum_{i=1}^{\circ} A_{i} \Gamma_{i}^{\mu}\right) u(P) = \frac{4\pi W}{M} \chi_{f}^{\dagger} \mathcal{F} \chi_{i},$$

где χ_i и χ_f обозначают начальный и конечный спиноры Паули, а \mathcal{F} линейная комбинация произведений \mathcal{F}_i на матрицы Паули.

Заменив в $k_1 + p = k_2 + k + p_h + p_x$ импульс фотона k на $k_s = (1 - z_1)k_1$ или $k_p = (1/z_2 - 1)k_1$ получим 2 "сдвинутые" борновское кинематики

$$z_1k_1 + p = k_2 + k + p_h + p_x$$

 $k_1 + p = k_2/z_2 + k + p_h + p_x$

Приближение ведущих логарифмов

Радиационные сечения

$$\begin{split} d\sigma_s^R &= \frac{\alpha}{2\pi} I_m dz_1 \frac{1+z_1^2}{1-z_1} \frac{p_{ls} S_x^2}{p_l (z_1 S - X)^2} \sigma_B(z_1 S, z_1 Q^2, x_s, z_s, p_{ts}, \phi_{hs}), \\ d\sigma_p^R &= \frac{\alpha}{2\pi} I_m dz_2 \frac{1+z_2^2}{z_2^2 (1-z_2)} \frac{p_{lp} S_x^2}{p_l (S - X/z_2)^2} \sigma_B(S, z_2^{-1} Q^2, x_p, z_p, p_{tp}, \phi_{hp}). \\ I_m &= \log Q^2 / m^2 \text{ инфракрасно расходятся при } z_{1,2} \to 1 \\ x_s &= \frac{z_1 Q^2}{(z_1 S - X)}, z_s &= \frac{zS_x}{(z_1 S - X)}, \lambda_{Y_s} = (z_1 S - X)^2 + 4z_1 M^2 Q^2, p_{ls} = \frac{zS_x (z_1 S - X) - 2M^2 (z_1 V_1 - V_2)}{2M \sqrt{\lambda_{Y_s}}}, \\ \rho_{ts} &= \sqrt{\frac{z^2 S_x^2}{4M^2} - p_{ls}^2 - m_{h}^2, \cos \phi_{hs}} = \frac{(z_1 S + X)(2z_1 zS_x Q^2 + (z_1 S - X))(z_1 V_1 - V_2)) - \lambda_{Y_s} (z_1 V_1 + V_2)}{4z_1 p_{ts} \sqrt{\lambda_{Y_s} \lambda_1}}, \\ x_p &= \frac{Q^2}{(z_2 S - X)}, z_p = \frac{zS_x}{(S - z_2^{-1} X)}, \lambda_{Y_p} = (S - z_2^{-1} X)^2 + 4z_2^{-1} M^2 Q^2, \\ \rho_{lp} &= \frac{zS_x (S - z_2^{-1} X) - 2M^2 (V_1 - z_2^{-1} V_2)}{2M \sqrt{\lambda_{Y_p}}}, p_{tp} = \sqrt{\frac{z^2 S_x^2}{4M^2} - p_{lp}^2 - m_h^2}, \\ \cos \phi_{hp} &= \frac{z_2 [(S + z_2^{-1} X)(2z_2^{-1} zS_x Q^2 + (S - z_2^{-1} X)(U_1 - z_2^{-1} V_2)) - \lambda_{Y_p} (V_1 + z_2^{-1} V_2)]}{4\rho_{tp} \sqrt{\lambda_{Y_p} \lambda_1}}. \end{split}$$

Приближение ведущих логарифмов

(+)-оператор $P(z) = \frac{1+z^2}{(1-z)_+}$, был прелложен для КХД Ю.Л. Докшицер ЖЭТФ. 73, 1216 (1977). В.Н. Грибов, Л. Н. Липатов ЯФ. 15, 1218 (1972). G. Altarelli and G. Parisi, Nucl. Phys. В 126, 298 (1977). и обобщен на КЭД J. Blumlein, Z. Phys. C 47, 89 (1990). J. Kripfganz, H. J. Mohring, and H. Spiesberger, Z. Phys. C 49, 501 (1991).

$$\int_{x}^{1} dz P(z) f(z) = \int_{x}^{1} dz \frac{1+z^{2}}{1-z} (f(z) - f(1)) - f(1) \int_{0}^{x} dz \frac{1+z^{2}}{1-z}.$$

Электронные структурные функции

Е. А. Кураев и В. С. Фадин,

ЯФ. 41 (1985) 733-742

Е. А. Кураев, Н. П. Меренков и В. С. Фадин,

ЯФ. 47 (1988) 1593-1601

Основное уравнение

$$\sigma_{hL}^{in} = \int_{z_1^m}^1 dz_1 D(z_1, Q^2) \int_{\hat{z}_2^m}^1 \frac{dz_2}{z_2^2} D(z_2, Q^2) \frac{\hat{p}_l S_x^2 \sigma_{hard}(z_1 S, \frac{z_1}{z_2} Q^2, \hat{x}, \hat{z}, \hat{p}_t, \hat{\phi}_h)}{p_l (z_1 S - X/z_2)^2}$$

где

$$\sigma_{hard} = \sigma_{Born} + \sigma_{RC} - \sigma_{RC}^{s} - \sigma_{RC}^{p}$$

РП фактор $\delta = \sigma_{RC}/\sigma_B + 1$

РП фактор $\delta = \sigma_{RC}/\sigma_B + 1$

Асимметрии Коллинза и Сиверса

$$A_{UT}^{\sin(\phi_h - \phi_\eta)} = \frac{\int\limits_{0}^{2\pi} d\phi_\eta \int\limits_{0}^{2\pi} d\phi_h \sin(\phi_h - \phi_\eta) \sigma^{UT}}{\int\limits_{0}^{2\pi} d\phi_\eta \int\limits_{0}^{2\pi} d\phi_h \sigma^{UT}}$$

Асимметрия Коллинза описывает распределение неполяризованных кварков внутри поперечно

поляризованного протона.

$$A_{UT}^{\sin(\phi_h + \phi_\eta)} = \frac{\int\limits_{0}^{2\pi} d\phi_\eta \int\limits_{0}^{2\pi} d\phi_h \sin(\phi_h + \phi_\eta) \sigma^{UT}}{\int\limits_{0}^{2\pi} d\phi_\eta \int\limits_{0}^{2\pi} d\phi_h \sigma^{UT}}$$

Асимметрия Сиверса расшифровывает фундаментальную корреляцию между поперечным спином фрагментирующегося кварка и поперечным импульсом образовавшегося конечного адрона.

Асимметрии Коллинза и Сиверса

Выводы

- Полученные выше аналитические результаты для точной однопетлевой поправки были опубликованы в I.Akushevich, A.Ilyichev. Phys.Rev. D100 (2019) no.3, 033005
- Используя модель WW-SIDIS для полуинклюзивных структурных функций
 - S. Bastami et al., JHEP 1906, 007 (2019)

и эксклюзивные амплитуды с параметризацией MAID2007 разработана новая версия ФОРТРАН кода HAPRAD, которая позволяет вычислять радиационные поправки для поляризованного полуинклюзивного глубоконеупругого рассеяния.

- Разница между точным и лидирующими РП в неполяризованном случае увеличивается с ростом z и pt.
- Радиационные поправки для асимметрий Сиверса и Коллинза показали, что в областях малых z и больших pt довольно существенный вклад происходит от эксклюзивного радиационного хвоста. Кроме того, результаты показывают довольно хорошее соответствие между точными поправками и поправками лидирующего порядка в кинематике экспериментов JLab.