Определение аромата струи и измерение доли глюонных струй в эксперименте CMS

Дмитрий Будковский^(1,2), Сергей Шульга^(1,3)

⁽¹⁾ОИЯИ ⁽²⁾ НИИ ЯП БГУ ⁽³⁾ГГУ им. Ф.Скорины

История анализа

- 2013 г. Начало работы по измерению множественность заряженых частиц (МЗЧ) в tt канале
- 2015 г. Показано, что МЗЧ в q-обогащенной и g-обогащенной выборках (*tt* канал) практически равны в области малых *P_T^{jet}* < 150 ГэВ. Это 1-е непрямое наблюдение "подавления" g-струй
- 2018 г. Предложено и реализовано прямое измерении доли глюонных струй с применением официального кварк-глюонного дискриминатора (*tt* - канал) - "подавление" g-струй подтверждено
- 2020 г. Наблюдение "подавления" g-струй в канале "dijets" (Run-1 и Run-2). Первое измерение МЗЧ q/g-струй по измеренной доли глюонных струй
- 2021 г. Начало совместной работы по анализу канала инклюзивных струй с сотрудниками из Marmara University (TR) и University of Ioannina (GR)
- 2022 г. Показано "подавление" g-струй в инклюзивных стрях
- 2023 г. Показано "подавление" g-струй в канале Z+jet

4 CMS Analysis Note 3 Статьи (PEPAN) 2 Статьи готовятся

Дмитрий Будковский

The Actual Problems of Microworld Physics-2023, September 1, 2023

⁻Run-I

Run-II

Введение

- Струи являются результатом адронизации первичных партонов
- Если струя может быть проассоциирована с кварком/глюоном то она является кварковой/глюонной

В данной работе мы хотим измерить долю глюонных струй в инклюзивном канале

Описание анализа

- > Использовались данные Run-II (2016) и МК Pythia8+MadGraph
- ➤ Исследуются AK4 CHS
- ➢ В данных брались события отобранные HLT_PFJet* триггером
- В событии проверяется наличие хотя бы одной струи с $p_T > 49$ ГэВ и |y| < 2

 $\succ \frac{E_T^{miss}}{\sum E_T} < 0.3$

- Были применены МЕТ фильтры
- > Применялось условие "хорошей" главной вершины
- > Удалялись струи из "горячих зон" детектора
- Применялись веса для учета эффекта prefiring
- PU вычитался из МК и данных
- В МК РU был перевзвешен

Дифференциальное сечение инклюзивного рождения струй

Соответствие между данными и МК в пределах 20% в области до 1 ТэВ, и данные ниже чем МК в области рТ > 1 ТеV, но не более чем 30%

Определение аромата струи (MC Truth)

- В анализе использовались два метода определения аромата струи:
 - Algorithmic definition использует конечные партоны (непосредственно перед адронизацией)
 - Physics definition использует начальные партоны –продукты жесткого процесса и излучения в начальном состоянии
- Аромат струи определяет партон, геометрически попавший в область адронной струи (метод "ghosts")

Кварк-глюонный дискриминатор (КГД)

- Глюонный струи могут быть отделены от кварковых с помощью кварк-глюонного дискриминатора (КГД) построенного на трех переменных:
 - Мноежественность частиц (больше для глюонных струй)
 - Меньшая ось эллипса струи в (η, ϕ)-прострунстве a_2 (больше для глюонныз струй)
 - Функция фрагментации $p_T D = \frac{\sqrt{\sum_i p_T^2}}{\sum_i p_T i}$ (меньше для глюонных струй)

CMS PAS JME-13-002 CMS PAS JME-16-003

Дмитрий Будковский

Jet

9

- Сначала мы получаем QGL распределения для данных и МК: Н^{данные/МК}(D)
- После чего мы создаем из МК кварковые (*H^{MK}_q(D*)) и глюонные (*H^{MK}_g(D*)) QGL шаблоны нормированные на единицу и фитируем QGL распределения этими шаблонами
 - Используется одно-параметрическое фитирование методом наименьших взвешенных квадратов

$$H^{\text{данные/MK}}(D) = \alpha_g H_g^{\text{MK}}(D) + (1 - \alpha_g) H_q^{\text{MK}}(D)$$

¹S. Shulha, S.Shmatov, A.Zarubin: CMS AN-2018-131, **2018** – 1^{ая} работа о возможности измерения доли g-струй

² S. Shulha, D.B.i, PEPAN Lett. **2021**, V.18, No.2, pp.239-243 – метод измерения доли g-струй

QGL распределения для данных и МК

Кварковые и глюонные QGL шаблоны

Здесь показана зависимость того, что q/g шаблоны зависят от кинематики струй:

- Линии q/g-шаблоны для 0<|y|<2;</p>
- Затемненная область это минимум и максимум среди всех бинов по быстроте

Измерение доли глюонных струй (Метод усреднения)

Для каждой параметра струи (V) можно записать:

https://indico.cern.ch/event/1274403/

$$V^{\text{данные}/\text{MK}} = \alpha_g V_g^{\text{MK}} + (1 - \alpha_g) V_q^{\text{MK}}$$

Данное уравнение имеет решение:

$$\alpha_{g,V} = \frac{V^{\text{данные/MK}} - V_q^{\text{MK}}}{V_g^{\text{MK}} - V_q^{\text{MK}}}$$

- В случае МК, использование любого параметра приводит к одному значению доли струй
- В данных применение использование различных параметров приводит к разному результату, что говорит о неправильном описании свой струй МК генератором
- Такой подход позволяет взять несколько параметров и по полученным значениям доли струй определить ошибку связанную с неточностью МК генератора, как разброс между измеренными значениями

$$\alpha_{g} \equiv \langle \alpha_{g,V} \rangle = \frac{\sum_{V=1}^{N_{V}} \alpha_{g,V}}{N_{V}}$$
$$\Delta \alpha_{g} \equiv \frac{\sqrt{\langle \alpha_{g,V}^{2} \rangle - \langle \alpha_{g,V} \rangle^{2}}}{\sqrt{N_{V}}}$$

Дмитрий Будковский

Доля глюонных струй в данных и МК моделировании

- Измерение доли g-струй с ипользованием трех переменных (mult, ax2, Ptd) приводит к разным результатам, что говорит о несоответствии свойств струй в MC свойствам струй в данных
- Наблюдается недостаток глюонных струй в данных, особенно в области низких *p_T*
- Если рассчитать долю струй как среднее между тремя переменными, результат будет очень близок посчитанному фитированием

Заключение

- Для данных CMS Run-II (2016) получены выборки струй в бинах P_T^{jet} и y^{jet}, которые согласуются с дифференциальным сечением рождения инклюзивных струй в модели (MadGraph5+Pythia8)
- Измерены доли глюонных струй в канале инклюзивных струй для данных CMS Run-II (2016) в зависимости от P_T^{jet} и y^{jet}
- Показано, что в инклюзивных струях в области малых P_T^{jet} < 100 ГэВ доля глюонных струй значительно меньше в данных, по сравнению с моделью. Это согласуется с предыдущими измерениями в других каналах Run-1 и Run-2
- Измерение доли глюонных струй с применением нового метода показывает большое различие свойств кварковых и глюонных струй в данных и в модели

Back up

Дмитрий Будковский

Данные и МС

- Data 2016 UltraLegacy SMP-HAD Ntuples:
 - "/eos/cms/store/group/phys_smp/Multijet/13TeV/UltraLegacy/UL16/" "B.root", "C.root", "D.root", "E.root", "Fe.root", "Fl.root", "G.root", "H.root"
- MC Pythia+MadGraph Ntuples:
 - "/eos/cms/store/group/phys_smp/Multijet/13TeV/UltraLegacy/UL16/MGP8CP5_Binned"
 - "/eos/cms/store/group/phys_smp/Multijet/13TeV/UltraLegacy/UL16/MGP8CP5_Binned_APV" "HT_50to100.root", "HT_100to200.root", "HT_200to300.root", "HT_300to500.root", "HT_500to700.root", "HT_700to1000.root", "HT_1000to1500.root, , "HT_1500to2000.root", "HT_2000toInf.root"
- Analysis bins:
 - > p_t bins: {49, 56, 64, 74, 84, 97, 114, 133, 153, 174, 196, 220, 245, 272, 300, 330, 362, 395, 430, 468, 507, 548, 592, 638, 686, 737, 790, 846, 905, 967, 1032, 1101, 1172, 1248, 1327, 1410, 1497, 1588, 1684, 1784, 1890, 2000, 2116, 2238, 2366, 2500}
 - ➤ y bins: {0, 0.5, 1, 1.5, 2}

Кварк-глюонный дискриминатор (QG Likelihood)

•
$$QGL(\vec{x}) = \frac{Q(\vec{x})}{Q(\vec{x}) + G(\vec{x})}$$
 - значение дискриминатора
 $Q(\vec{x}) = \prod_{i=1}^{3} f_Q^{(i)}(x_i), \qquad G(\vec{x}) = \prod_{i=1}^{3} f_G^{(i)}(x_i)$

- $f_{Q/G}^{(i)}(x_i)$ нормированные распределения q/g-струй по параметру x_i
- *x_i* характеристики струй
- Run-2: Q/G Дискриминатор записан в MiniAOD
 CMS PAS JME-16-003

https://twiki.cern.ch/twiki/bin/viewauth/CMS/QuarkGluonLikelihood

- Для построения D выбирают наиболее дискриминирующие переменные (*x_i*) :
 - Множественность (больше для глюонных струй)
 - Меньшая ось эллипса в *η-ф* пространстве (больше для глюонных струй)
 - Функция фрагментации: $\frac{\sqrt{\sum_{i} p_{T,i}^2}}{\sum_{i} p_{T,i}}$ (меньше для глюонных струй)

Дмитрий Будковский

MC file	Number of events	σ, μb
HT_50to100.root	38967841	186.1
HT_100to200.root	96272215	23.63
HT_200to300.root	55579875	1.554
HT_300to500.root	57614989	0.3238
HT_500to700.root	59655356	0.03028
HT_700to1000.root	47387524	0.006392
HT_1000to1500.root	15308062	0.001118
HT_1500to2000.root	10384159	0.0001089
HT_2000toInf.root	5337587	0.00002193

Триеггры

Trigger name	Trigger ranges, GeV	L_{eff} , μb $^{-1}$
HLT_PFJet40	49-84	267102.0
HLT_PFJet60	84-114	726442.6
HLT_PFJet80	114-196	2759571.8
HLT_PFJet140	196-272	24200090.1
HLT_PFJet200	272-330	103855785.3
HLT_PFJet260	330-395	593903056.6
HLT_PFJet320	395-468	1772915556.4
HLT_PFJet400	468-548	5195564785.9
HLT_PFJet450	548-6500	36329675572.0

• All triggers were prescaled, that is why we have to recover initial number of events

https://twiki.cern.ch/twiki/bin/viewauth/CMS/InclusiveJetsLegacy

Hot zones

We merge these maps and apply combine version for data and MC

https://github.com/cms-jet/JECDatabase/tree/master/jet_veto_maps/Summer19UL16_V0/hotjets-UL16.root Дмитрий Будковский The Actual Problems of Microworld Physics-2023, September 1, 2023 Prefiring

• Each prefired event is multiplied by: $weight = \frac{1}{\prod_i (1 - P_i(\eta, p_T))}$

https://twiki.cern.ch/twiki/bin/viewauth/CMS/L1PrefiringWeightRecipe

Дмитрий Будковский