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Problem setting

We consider quantum Ising spin chain in external magnetic �eld:
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Thermalization

We are particularly interested in thermalization. This is the process when
every �nite subsystem relaxes to the thermal equilibrium as a result of

evolution (the complement of this subsystem plays a role of a thermal

bath). Mathematically it can be expressed as follows

⟨ψ(t)|A |ψ(t)⟩ → Tr(ρthA)

where A is a local operator, ρth = 1

Zth
e−βH - thermal Gibbs ensemble.

In other words, at the end of evolution, the system looks thermal for any

local part of the system and, in this part, the system loses information

about initial state, but globally no information is lost, initial pure state

transforms into �nal pure state.



Integrable and non-integrable systems

Integrable systems

The system has an extensive number of conserved quantities:

{Qi}, [H,Qi ] = 0. They constrain the dynamics of a system.

The system equilibrates to Generalized Gibbs Ensemble (GGE) instead

of the Gibbs ensemble:

⟨ψ(t)|A |ψ(t)⟩ → Tr(ρGGEA)

where ρGGE = 1

ZGGE
e
∑

i µiQi .

Non-integrable systems

The system thermalizes to the Gibbs ensemble:

⟨ψ(t)|A |ψ(t)⟩ → Tr(ρthA)



We are interested in the vicinity of an integrable point, and we aim to

observe how the system changes its behavior.
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For our system, it happens for the following sets of parameters in

Hamiltonian:

g ̸= 0 �xed, h → 0

h ̸= 0 �xed, g → 0



Imagine an initial con�guration (�ux) in some local area of a chain.

This �ux thermalizes, but there are di�erent processes and they happen at

di�erent timescales. We concentrate on the slowest one. As the system has

only one conserved quantity - energy, one can easily construct local

operator with slow dynamics - it is energy �ux.

Thus, the slowest timescale is believed to correspond to energy propagation.



Di�erent processes happening at di�erent timescales are described by local

operators in the area of initial con�guration.

As we are interested in the slowest timescale, the corresponding operator O
is the one which best commutes with Hamiltonian:

minTr[H,O]†[H,O]

where H lives in the whole chain

O has some local support at N consecutive spins



As O is almost conserved, it modi�es the thermalization process. One

observes an extra prethermalization stage, and all operators �rst relax to it,

and only after completely thermalize.

1 Initial period of prethermalization when all operators equilibrate to

G̃GE :
⟨ψ(t)|A |ψ(t)⟩ → Tr(ρ

G̃GE
A)

where ρ
G̃GE

= e−βH+µO0 .

2 Period of �nal thermalization:

Tr(ρ
G̃GE

A) → Tr(ρthA)



Objectives (part 1/2)

We aim to answer the following questions:

Does O really correspond to the energy propagation?

What is the speed of propagation of O?

Does O become one of the integrals of motion, when one approaches

an integrable point?

We check the validity of prethermalization stage description.

What are the changes in the dynamics of O when one approaches an

integrable point?



Relaxation timescales

We construct the slowest operator O0 as the one, which best commutes

with Hamiltonian:

minTr[H,O0]
†[H,O0]

where H lives in the whole chain. O0 has some local support at N
consecutive spins.

The faster operators are constructed in a similar way. The next operator

O1 is de�ned as: Tr[H,O1]
†[H,O1] is minimal, provided TrO0O1 = 0

(orthogonality). Then, one can de�ne other operators O2,O3, . . . by
minimizing Tr[H,Oi ]

†[H,Oi ], with the condition that Oi is orthogonal to

all the previous operators.



Objectives (part 2/2)

We aim to answer the following questions:

What is the physical meaning of all these operators? Do they

correspond to propagation of some conserved quantities?

How do they change their dynamics when one approaches an

integrable point?

Do they become integrals of motion?



Construction

We construct the slowest operator in a tensor network form:

Figure 1: Tensor network representation of the slowest operator. The dark red
circles correspond to Pauli matrices σ(i), blue ones - to the tensor coe�cients A(i)

in front of them. Numbers correspond to dimensions of the edges.
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(a) Transformation of the term
Tr(O†H2

locO). After combining the
resulting tensor networks for all the
terms, DMRG algorithm can be applied.

(b) Reduction of the tensor network,
corresponding to −Tr[H,O]2. DMRG
algorithm can be applied to the network
on the right.

We �nd O by minimization of Tr[H,O]†[H,O]. For this, we represent
Tr[H,O]†[H,O] in a form ⟨O|H |O⟩ and apply DMRG algorithm.

Tr([H,O]†[H,O]) = Tr(O†H2

locO) + Tr(O†OH2

loc)− 2Tr(O†HlocOHloc)+

2− 2Tr(O†σ
(0)
z Oσ

(0)
z ) + 2− 2Tr(O†σ

(N−1)
z Oσ

(N−1)
z )

Each one of these terms can be represented in a tensor network form

⟨O| . . . |O⟩.



Quantities we calculate

1 Scaling of Tr([H,O]†[H,O]) with h - to see if the operators become

integrals of motion, how many of them are signi�cantly slower than

others.

2 Overlap TrOP of an operator O with probe operators P (energy
�ux, di�usion mode, magnetization1,2,3) - to see if obtained

operators do correspond to any known quantities.

3 Time evolution of TrO(t)O(0) - to estimate the rate of propagation

of operators over the chain (recall Kubo relations: transport

coe�cients are proportional to 2-point correlation functions).

4 Out-Of-Time-Ordered Commutator (OTOC)

Tr([O(t), σ
(i)
x ,y ,z(0)]†[O(t), σ

(i)
x ,y ,z(0)]) - also to estimate the rate of

propagation of operators (di�erent method).



Overlap with probe operators

We calculate overlap (TrOP) of both slowest operators with di�usion

mode, energy �ux and magnetization to �nd their physical meaning.

Di�usion mode
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(energy �ux with density gradually vanishing to the boundaries of its

support - bell shape)

Energy �ux

N−2∑
i=0

(−σ(i)
z σ(i+1)

z ) +
N−1∑
i=0

(hσ(i)
z + gσ(i)

x ) + (−σ(N−1)
z σ(0)

z )

(Hamiltonian terms + extra cyclic boundary terms)

Magnetization

M(0)
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i=0

σ(i)
x,y,z



Time evolution

We calculate 2-point correlation function TrO(t)O(0) in a spirit of Kubo

relations (transport coe�cients are connected to correlation functions of

operators).

We use random vector approximation (for the trace) to simplify the
calculation:

1

2L
TrO(t)O(0) =

1

2L
Tr

(
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K
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⟨ϕk (−t)|O(0) |χk (−t)⟩

We calculate time evolution of vectors |ϕk(−t)⟩ and |χk(−t)⟩ using the

method of Chebyshev polynomials:

|ψ(t)⟩ = e−iHt |ψ⟩ = J0(2Ē t) |ψ⟩+ 2

∞∑
n=1

(−i)nJn(2Ē t)Tn

(
H̄

2

)
|ψ⟩

where Tn are Chebyshev polynomials of the �rst kind, and Jn are Bessel functions of the

�rst kind.



Time evolution: OTOC

We also calculate Out-Of-Time-Ordered Commutator (OTOC) with Pauli

matrices �xed at various positions over the chain. In this way we see how

the slowest operator propagates over the chain.

Tr([O(t), σ
(i)
x ,y ,z(0)]

†[O(t), σ
(i)
x ,y ,z(0)])



Results: scaling of Tr([H ,O]†[H ,O]) with h

(a) Scaling of Tr([H,O]†[H,O]) with h, g = 1.05



Results: time evolution of TrO(t)O(0)

(a) Time evol., g=1.05, h=0.0 (integrable)



Results: time evolution of TrO(t)O(0)

(a) Time evol., g=1.05, h=0.1 (non-integrable)



Results

Di�erent physical operators intertwine between integrable points

(g >> h and h >> g).

For g >> h, there is one operator much slower than others, while for

h >> g , there is a degenerate space of slowest operators.

Operators form groups.

Near an integrable point g >> h, operators do not become integrals

of motion, but near h >> g - they do.

The quantity Tr[H,O]†[H,O] de�nes overall time evolution of an

operator (op2 and op3 have identical TrO(t)O(0), see Fig. (b)).

Hierarchy between quantities Tr[H,Oi ]
†[H,Oi ] does not correspond to

the hierarchy between thermalization times (op2 thermalizes faster

than op3 and op4, see Fig. (c)).

Revivals of all operators get suppressed when one goes away from an

integrable point.



Overlap

(a) op0 (b) op1 (c) op2 (d) op3 (e) op4

(f) op5 (g) op6 (h) op7 (i) op8 (j) op9



From these �gures, one can construct the physical modes, enumerated

above.

(a) phys.0 (b) phys.1 (c) phys.2 (d) phys.3 (e) phys.4

(f) phys.5 (g) phys.6 (h) phys.7 (i) phys.8

There is a signi�cant portion of energy dynamics at fast timescales.

There are also signs of di�usion transport.



Results: OTOC Tr([O(t), σ
(i)
x ,y ,z(0)]†[O(t), σ

(i)
x ,y ,z(0)])

(a) OTOC, g=1.05, h=0.0 (integrable),
di�erent operators, position of
sigma3=center

(b) OTOC, g=1.05, h=0.0 (integrable),
di�erent positions of sigma3
.



The operators from the same group transform one into another during

the evolution.

OTOCs for di�erent operators have various shapes of dynamics.

OTOC also shows the suppression of revivals when one goes away

from an integrable point.



Results

There is a transient behavior of the local slowest operator when one goes

away from the integrable point:

(a) Loc.
(g = 1.05, h = 0.0)

(b) Loc.
(g = 1.05, h = 0.1)

(c) Loc.
(g = 1.05, h = 0.4)

Figure 9: Overlap Tr(OP) of the slowest operator O and a probe operator P as a
function of support size N of the slowest operator. We take P as di�usion mode,
energy �ux, magnetization1,2,3.



Results

Figure 10: g = 1.05, h = 0.0



Results

Figure 11: g = 1.05, h = 0.1



Results

For the local slowest operator, there are revivals - they signify that the

operator has propagated through the whole chain and has come back.

There are revivals of half the amplitude.

Revivals get suppressed when one goes away from an integrable point.

One can clearly see the moment when the local operator reaches the

boundaries of the whole system.

Translationally-invariant operator does not have revivals and

thermalizes slower.



Figure 12: OTOC of the slowest operator with the Pauli matrix at a particular
site: Tr(−[O(t), σi (0)]

2) (L = 11, N = 6). Local operator, g = 1.05, h = 0.1.

Initially, the local operator commutes only with those Pauli matrices that do not have

overlap with its support. But, as the system evolves, the commutators at di�erent

positions acquire equal values - the operator propagates through the whole chain and

settles down equally everywhere.



One can see the suppression of revivals for OTOC, as well:

Figure 13: OTOC of the slowest operator with the Pauli matrix at a particular
site: Tr(−[O(t), σi (0)]

2) (L = 11, N = 6). Local operator, g = 1.05, h = 0.0.



Ñonclusion

Slowest operators correspond to the slowest mode of dynamics of the

local �ux relaxation.

Slowest operators appear in the GGE ensemble, to which a system

equilibrates at intermediate (prethermalization) stage.

Local slowest operators are constructed using tensor networks and

DMRG algorithm.

Local operator does not correspond to an integral of motion and does

not appear in GGE exponent.

Local slowest operator has great overlap with energy �ux.

When one goes away from an integrable point, revivals of the local

operator get suppressed, while overlap function shows transient

behavior.

OTOC is connected to chaotic behavior, but also describes

propagation of operator over the chain.



Thank you


