Correlation between mean transverse momentum and anisotropic flow in models at NICA energy range

Idrisov Dim¹, Peter Parfenov^{1,2}

- 1. National Research Nuclear University (MEPhI), Moscow, Russia
- 2. Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia

Cross-PWG Meeting 28/03/23

Outline

- Introduction
- Method for the transverse momentum-flow correlations measurements
- Comparison with published data
- The results at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV for different models
- Summary and outlook

Elliptic flow at NICA energies

- v₂ is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{_{NN}}} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v₂
 - need hybrid models with QGP phase (vHLLE+UrQMD, AMPT SM)

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced in the string/cascade(UrQMD, SMASH) and hybrid(AMPT SM, vHLLE+UrQMD) models
- Dominant source of v₂ fluctuations: participant
 eccentricity fluctuations in the initial geometry

The correlation coefficient

The correlation coefficient defined as

$$\rho(\mathbf{v}_2^2, [p_T]) = \frac{\operatorname{cov}(\mathbf{v}_2^2, [p_T])}{\sqrt{\operatorname{var}(\mathbf{v}_2^2)_{dyn}}\sqrt{c_k}}$$

where
$$\operatorname{var}\left(\mathbf{v}_{2}^{2}\right)_{dyn} = \left\langle\mathbf{v}_{2}^{4}\right\rangle - \left\langle\mathbf{v}_{2}^{2}\right\rangle^{2} = \left\langle\left\langle4\right\rangle\right\rangle\Big|_{A,C} - \left\langle\left\langle2\right\rangle\right\rangle^{2}\Big|_{A,C}$$

$$\left\langle \left\langle 2 \right\rangle \right\rangle \Big|_{A,C} = \left\langle \left\langle e^{i \cdot 2\left(\varphi_{1}^{A} - \varphi_{2}^{C}\right)} \right\rangle \right\rangle = \frac{\mathcal{Q}_{2,A}\mathcal{Q}_{2,C}^{*}}{M_{A}M_{C}},$$

$$\left\langle \left\langle 4 \right\rangle \right\rangle \Big|_{A,C} = \left\langle \left\langle e^{i \cdot 2\left(\varphi_{1}^{A} + \varphi_{2}^{A} - \varphi_{3}^{C} - \varphi_{4}^{C}\right)} \right\rangle \right\rangle = \frac{\left(\mathcal{Q}_{2,A}^{2} - \mathcal{Q}_{4,A}\right)\left(\mathcal{Q}_{2,C}^{2} - \mathcal{Q}_{4,C}\right)^{*}}{M_{A}\left(M_{A} - 1\right)M_{C}\left(M_{C} - 1\right)}$$

$$Q_{n,A/C} = \sum_{k} e^{i \cdot n \varphi_{k}^{A/C}} - \text{flow vector for A/C sub event}$$
$$M_{A/C} - \text{multiplicity of particles}$$
$$-1 < \eta < -0.35 \qquad |\eta| < 0.35 \qquad 0.35 < \eta < 1$$
$$A \qquad B \qquad C$$

to suppress non-flow effects, the two sub-events method was used

In the study were used charged particles with $0.2 < p_T < 2.0 \text{ GeV/c}$

The correlation coefficient **2**

The variance of the mean transvers momentum, taking into account autocorrelations, is defined as

where
$$[p_T] = \sum_{i=1}^{M_B} p_{T,i} / M_B$$

to suppress non-flow and autocorrelation effects

in the $cov(v_2^2, [p_T])$ the three-subevents method was used

$$-1 < \eta < -0.35$$
 $|\eta| < 0.35$ $0.35 < \eta < 1$
A B C

$$c_{k} = \left\langle \frac{1}{M_{B}(M_{B}-1)} \sum_{B} \sum_{B' \neq B} \left(p_{T,B} - \left\langle \left[p_{T} \right] \right\rangle \right) \left(p_{T,B'} - \left\langle \left[p_{T} \right] \right\rangle \right) \right\rangle$$

$$\operatorname{cov}\left(\mathbf{v}_{2}^{2},\left[p_{T}\right]\right) = \left\langle \frac{\sum_{A,C} e^{i \cdot 2\left(\varphi_{1}^{A} - \varphi_{2}^{C}\right)} \sum_{B} \left(p_{T,B} - \left\langle \left[p_{T}\right]\right\rangle\right)}{M_{A}M_{C}M_{B}} \right\rangle$$

Magdy, Niseem & Lacey, Roy. (2021). Physics Letters B. 821. 136625. 10.1016/j.physletb.2021.136625.

Motivation of the work

> The $\rho(v_2^2, [p_T])$ is sensitive to initial state and its entropy density profile

The cov(v_2^2 , $[p_T]$) and var(v_2^2) are sensitive to η/s

 \succ The precise set of measurements for var($[p_T]$), var(v_2^2), cov(v_2^2 , $[p_T]$) and $\rho(v_2^2, [p_T])$ as a

function of beam-energy and centrality, could help precision extraction of the temperature and

baryon chemical-potential dependence of η/s

Centrality for Au+Au collisions at $\sqrt{S_{NN}} = 62.4$ GeV in vHLLE+UrQMD

The reasonable fit quality and good agreement of the impact parameter distribution with the model data. For centrality determination the Inverse Bayes approach was used.

Parfenov, P.et.al; Particles 2021, 4, 275-287. https://doi.org/10.3390/particles4020024

Comparison of correlation coefficient with published results

The published data taken from: Niseem Magdy et. al. Published in: Phys.Rev.C 105 (2022) 4, 044901

Filled red squares: multiplicity-based centrality Open black squares: b-based centrality

- A good agreement between published data and results with b-based centrality
- The cov(v₂², [p_T]) is sensitive to the multiplicity fluctuations

The $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ depend on the centrality determination method.

The transverse momentum-flow correlations at $\sqrt{S_{NN}}$ =11.5 GeV

- $\rho(v_2^2, [p_T])$ decreases in the most central collisions due to the eccentricity decreases faster compared to changes in elliptic area.
- $\rho(v_2^2, [p_T])$ from vHLLE+UrQMD and UrQMD are consistent with each other due to the same initial state
 - $\rho(v_2^2, [p_T])$ is sensitive to initial state
- $cov(v_2^2, [p_T])$ from vHLLE+UrQMD and AMPT are consistent due to QGP phase
 - cov(v₂², [p_T]) is sensitive to thermalization (η/s, etc.)

The transverse momentum-flow correlations at $\sqrt{S_{NN}}$ =7.7 GeV

• The same trends as for

 $\sqrt{S_{NN}}$ =11.5 GeV

- The var(v₂²) decrease with decreasing energy
- More statistics are needed to get more accurate results

The partial correlation coefficient

Bozek, P, Mehrabpour, H. Phys. Rev. C 2020; 101:064902.

Summary and outlook

- A good agreement between published data and results for vHLLE+UrQMD at $\sqrt{S_{NN}}$ = 62.4 GeV with bbased centrality for cov(v₂², [p_T]) and ρ (v₂², [p_T])
- The $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ depend on the centrality determination method due to the multiplicity fluctuates
- The results at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV for AMPT, UrQMD, and vHLLE+UrQMD
 - $\rho(v_2^2, [p_T])$ from vHLLE+UrQMD and UrQMD are consistent with each other due to the same initial state
 - $\operatorname{cov}(v_2^2, [p_T])$ from vHLLE+UrQMD and AMPT are consistent due to QGP phase simulation
 - $ho(\mathrm{v}_2^2,[p_T])$ decreases in the most central collisions
- To compare results for partial and non-partial correlation coefficient at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV for AMPT, UrQMD, and vHLLE+UrQMD models
- Study sensitivity of $v_2^2 [p_T]$ partial correlation coefficient to different equation of states in models within mean-field approach at lower beam energies

Thank you for your attention!

Elliptic flow and its fluctuations at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV

The flow fluctuations are model independent and decrease with decreasing energy.

The results for vHLLE+UrQMD at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV

The results for UrQMD at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV

Do the $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ increases with decreasing energy due to non-flow effects?

The results for AMPT at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV

 $var([p_T]), var(v_2^2),$ $\operatorname{cov}(\mathbf{v}_2^2, [p_T])$ and $\rho(\mathbf{v}_2^2, [p_T])$ changes weakly at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV

Summary and outlook

- A good agreement between published data and results for vHLLE+UrQMD at $\sqrt{S_{NN}}$ = 62.4 GeV with b-based centrality for cov(v₂², [p_T]) and $\rho(v_2^2, [p_T])$
 - The $\operatorname{cov}(\mathbf{v}_2^2, [p_T])$ and $\rho(\mathbf{v}_2^2, [p_T])$ depend on the centrality determination method
- The results at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV for AMPT, UrQMD, and vHLLE+UrQMD
 - The $\rho(v_2^2, [p_T])$ vs. centrality for vHLLE+UrQMD at $\sqrt{S_{NN}}$ =7.7 and 11.5 shows the similar trends as for BES energies.
 - $\rho(v_2^2, [p_T]) < 0$ for the most central collisions in UrQMD and AMPT models at $\sqrt{S_{NN}} = 7.7$ and 11.5 GeV
- Investigate beam-energy and event-shape dependence of the $v_3^2 [p_T]$ correlation using vHLLE+UrQMD model
- Study sensitivity of $v_2^2 [p_T]$ correlation to different equation of states in models within mean-field approach at lower beam energies

Transverse momentum-flow correlations

- ▶ The $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ show agreement between AMPT (SM) and EPOS
- > Smaller $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$, from AMPT without SM

Transverse momentum-flow correlations

- > The $cov(v_2^2, [p_T])$ decreas with η/s
- > The $\rho(v_2^2, [p_T])$, show weak dependence on η/s

The transverse momentum-flow correlations dependence on beam energy in vHLLE+UrQMD model

- > The $cov(v_2^2, [p_T])$ decreas with beam energy
- > The $\rho(v_2^2, [p_T])$, show weak dependance on beam energy

Comparison of elliptic flow measurements with published results

Filled red squares: multiplicity-based centrality Open black squares: impact parameter (b) based centrality

A good agreement with published data. $v_2[2]$ and $v_2[4]$ are insensitive to centrality determination method.

The published data taken from: Niseem Magdy et. al. Published in: Phys.Rev.C 105 (2022) 4, 044901

Elliptic flow at NICA energies

- v₂ is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{NN}} = 4.5$ GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v₂ signal compared to STAR data
 - At √s_{NN} ≥ 7.7 GeV pure string/hadronic cascade models underestimate v₂ need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT SM, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant
 eccentricity fluctuations in the initial geometry

Elliptic flow at NICA energies

Taranenko et. al., Phys. Part. Nuclei **51**, 309–313 (2020)

• Strong energy dependence of v2 at $\sqrt{s_{NN}}$ = 3-11 GeV

▶ $v_2 \approx 0$ at $\sqrt{s_{NN}} = 3.3$ GeV and negative below

- Lack of differential measurements of v_2 at NICA energies (p_T , centrality, PID,...)
- v_2 is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{NN}} = 4.5$ GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v₂ signal compared to STAR data
 - At √s_{NN} ≥ 7.7 GeV pure string/hadronic cascade models underestimate v₂ need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

Relative elliptic flow fluctuations

Small value for the v_2 {4}/ v_2 {2} ratio corresponds to large fluctuation

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT with string melting, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant
 eccentricity fluctuations in the initial geometry

Elliptic flow at NICA energies

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT SM, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant
 eccentricity fluctuations in the initial geometry

- v_2 is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{NN}} = 4.5$ GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v₂ signal compared to STAR data
 - At √s_{NN} ≥ 7.7 GeV pure string/hadronic cascade models underestimate v₂ need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)