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Evolution equations for macroscopic quantities: time-dependent
Ginzburg-Landau (TDGL) equation for the order parameter ϕ

∂ϕ

∂t
= −γ

[

−2g∇2ϕ+ 2a(T − Tc)ϕ+ 4Bϕ3 − h
]

.

Diffusion-limited rate equation of the reaction A+ A → A for
the concentration c (k is rate constant) .

∂ϕ

∂t
= D∇2ϕ− kϕ2 .

Passive scalar problem (θ concentration, temperature etc.)

∂θ

∂t
+∇vθ = D∇2θ .

All subject to fluctuations: stochastic problems follow.
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Starting point of iteration is the linear TDGL equation

∂ϕ(0)

∂t
= −γ

[

−2g∇2ϕ(0) + 2a(T − Tc)ϕ
(0) − h

]

.

Solution is given by the propagator ∆

ϕ(0)(t,x) =

∫

dx′

∫

dt′∆(t− t′,x− x
′)γh(t′,x′) ,

which is the Green function of the differential operator of TDGL

[

∂

∂t
− 2γg∇2 + 2a(T − Tc)

]

∆(t−t′,x−x
′) = δ+(t−t′)δ(x−x

′) .



Iterative solution
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Cast the TDGL equation into an integral equation

ϕ(t,x) =

∫

dx′

∫

dt′∆(t− t′,x− x
′)
[

γh(t′,x′)− 4γBϕ3(t′,x′)
]

.

First order: put the zeroth-order (linear) solution in the right side to obtain

ϕ(1)(t,x) = −4γB

∫

dx′

∫

dt′∆(t− t′,x− x
′)
[

ϕ(0)(t′,x′)
]3

,

which then is substituted in the right side to obtain the second-order
contribution etc.
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Solution in a graphical form: two leading terms

ϕ = ϕ(0) + ϕ(1) + . . . = + + . . .

Directed line – ∆, the cross – γh, full dot – vertex factor.

The graphical solution consists of connected tree graphs only.

The propagator ∆ is the free-field response function:

χ(t− t′,x− x
′) =

δϕ(t,x)

δh(t′,x′)

∣

∣

∣

∣

h=0

= γ∆(t− t′,x− x
′) .
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Let ϕ[Ã] be solution of the generic kinetic equation

∂ϕ

∂t
= −Kϕ+ U(ϕ) + B(ϕ)Ã .

Generating function of solutions (only time integral explicit)

G(A) = e
∫
dtAϕ[Ã] ,

Use functional δ function to introduce integral representation

G(A) = e
∫
dtAϕ[Ã] =

∫

Dϕ δ
(

ϕ− ϕ[Ã]
)

e
∫
dtAϕ

=

∫

Dϕ δ
[

−∂tϕ−Kϕ+ U(ϕ) + B(ϕ)Ã
]

| detM | e
∫
dtAϕ .



Functional Jacobi determinant

AMMT-2023 July 23, 2023 Functional solutions – slide 8

Loop expansion of detM = eTr lnM yields the representation

detM = det
(

∂t +K − U ′ − B′Ã
)

= det (∂t +K) e−
∫
dt∆(0)(U ′+B′Ã) .

Here, the shorthand notation stands for

∫

dt∆(0)
(

U ′ + B′Ã
)

=

∫

dt

∫

dx

∫

dx′∆(t,x; t,x′)

×

∫

du

[

δU(x′, ϕ(t))

δϕ(u,x)
+ Ã(t,x′)

δB(x′, ϕ(t))

δϕ(u,x)

]

.

Diagonal value of the propagator (response function of ϕ)
∆(0) := ∆(t,x; t,x′) remains an explicit free parameter.

Note that all this does not require random Ã. Contrary to widespread view,
this ambiguity has nothing to do with the white-noise problem.



Ambiguous functional integral
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The resulting (formal) functional integral

G(A)=

∫

Dϕ

∫

Dϕ̃
∣

∣det (∂t +K) e−
∫
dt∆(0)[U ′+B′Ã]∣

∣ e
∫
dt ϕ̃[−∂tϕ+V+BÃ] e

∫
dtAϕ .

defines the dynamic action, ambiguous in a deterministic problem already

S =

∫

dt
{

ϕ̃
[

−∂tϕ−Kϕ+ U(ϕ) + B(ϕ)Ã
]

−∆(0)
[

U ′(ϕ) + B′(ϕ)Ã
]}

.

The corresponding S-matrix functional contains well-defined quantities:

G(A) = exp

(
∫

dt

∫

dt′
δ

δϕ
∆

δ

δϕ̃

)

exp
[

∫

dt ϕ̃
(

U +BÃ
)

−

∫

dt∆(0)
(

U ′ + B′Ã
)

+

∫

dt ϕ̃Ã +

∫

dtAϕ
]∣

∣

∣

ϕ̃=ϕ=0
.



Perturbation expansion for S-matrix functional
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Cast the functional integral for S-matrix functional H(φ) into Gaussian
integral with the aid of the shift operator

(

det
K

2π

)
−1

2

H(φ) =

∫

Dϕ exp

∫

dt
[

−
1

2
ϕKϕ+ (ϕ+ φ)A

+
∞
∑

n=3

1

n!
vn (ϕ+ φ)n

]

=

∫

Dϕ exp

∫

dt

(

−
1

2
ϕKϕ+ ϕ

δ

δφ

)

exp

∫

dt V (φ) .

Calculation of the Gaussian integral yields the relation (K∆ = 1)

H(ϕ) = exp

(

1

2

∫

dt

∫

dt′
δ

δϕ
∆

δ

δϕ

)

exp

∫

dt V (ϕ)

defining the functional integral as perturbation expansion with propagator ∆.



Perturbation expansion is unambiguous
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Independence of ∆(0) is revealed by the loop theorem

exp

(
∫∫

dtdt′
δ

δϕ
∆

δ

δϕ̃

) N
∏

n=1

Fn(ϕ, ϕ̃) = exp

(
∫∫

dtdt′
δ

δϕ
∆′ δ

δϕ̃

) N
∏

n=1

F ′
n(ϕ, ϕ̃) .

Reduction operator exp
(

∫

dt
∫

dt′ δ
δϕ
∆′ δ

δϕ̃

)

spans lines only between different

functionals in the normal form F ′(ϕ, ϕ̃) (diagonal terms are summed up)

F ′(ϕ, ϕ̃) ≡ exp

(
∫∫

dtdt′
δ

δϕ
∆

δ

δϕ̃

)

F (ϕ, ϕ̃) .

Generating function in the normal form does not contain ∆(0):

G(A)=exp

(
∫∫

dtdt′
δ

δϕ
∆′ δ

δϕ̃

)

exp
{

ϕ̃
[

U(ϕ) + B(ϕ)Ã
]

+ ϕ̃Ã+ Aϕ
}∣

∣

∣

ϕ̃=ϕ=0
.
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Discrete Volterra equation for ∂tϕ = V (ϕ) (0 ≤ ϑ ≤ 1):

ϕN = ϕ0+
N
∑

i=1

V (ϑϕi + (1− ϑ)ϕi−1) (ti − ti−1) , ϕi ≡ ϕ(ti) .

Form of integral sum in the form due Stratonovich (from
stochastic integral). Valid ∀N , replace by the equivalent system

ϕi = ϕi−1+V (ϑϕi + (1− ϑ)ϕi−1) (ti − ti−1) , i = 1, . . . , N .

Repeat continuum case: δ functions for these equations bring
about the Jacobi matrix (ϕi = ϑϕi + (1− ϑ)ϕi−1)

Mij = δi j − δi j−1 − (ϑδi j + (1− ϑ)δi j−1)V
′(ϕi) (ti − ti−1) .

Ambiguity comes from the definition of the integral!



Jacobi determinant of the Volterra equation
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Determinant of triangular Jacobi matrix is product of diagonal terms and in
continuum limit yields the closed-loop contribution of the functional Jacobi
determinant

detM =
N
∏

i=1

[1− ϑV ′(ϕi) (ti − ti−1)]
N→∞
−−−→ exp

[

−

∫

dt ϑV ′(ϕ)

]

,

since in the limit N → ∞, ti − ti−1 ∼ 1/N → 0 ∀i. Ambiguity comes not
from the propagator, but the integral sum! Fixing rules of integration is
called for.

Ambiguity has nothing to do with randomness, this is a deterministic problem!

Putting ∆(0) = 0 is misleading (yields degenerate propagator). But nothing
prohibits the choice ϑ = 0 in the integral.



Intermediate results
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Generating function of the deterministic evolution equation

∂ϕ

∂t
= V (ϕ) = −Kϕ+ U(ϕ) + B(ϕ)Ã

is expressed as the functional integral

G(A)=

∫

Dϕ

∫

Dϕ̃ exp

∫

dt

{

ϕ̃ [−∂tϕ−Kϕ+ U(ϕ)]

− ϑ
[

−K + U ′(ϕ) + B′(ϕ)Ã
]

+ Aϕ

}

,

with the integral sum of the form (ϕi = ϑϕi + (1− ϑ)ϕi−1, 0 ≤ ϑ ≤ 1)

N
∑

i=1

ϕ̃i {−ϕi + ϕi−1 + [V (ϕi) + ϑV ′ (ϕi)] (ti − ti−1)} .



Random processes

Iterative solution of
kinetic equation

Functional solution of
kinetic equation

Functional solution of
Langevin equation

⊲ Random processes

Kinetic equation with
white noise (Wiener
process)

Jacobi determinant
due to Wiener process

Characteristic
function of the
Langevin equation

De Dominicis-Janssen
action of Langevin
equation

Langevin equation
with coloured noise

AMMT-2023 July 23, 2023 Functional solutions – slide 15

Random process (field) described by joint PDFs
p (ϕ1, t1;ϕ2, t2; . . . ;ϕn, tn) .

Markov process: no memory. All PDFs expressed in terms of
p(t1, ϕ1) and p (ϕ1, t1|ϕ2, t2) (conditional PDF):

p (ϕ1, t1;ϕ2, t2; . . . ;ϕn, tn) = p (ϕn, tn|ϕn−1, tn−1)

× p (ϕn−1, tn−1|ϕn−2, tn−2) · · · p (ϕ2, t2|ϕ1, t1) p (ϕ1, t1)

provided t1 ≤ t2 ≤ t3 ≤ . . . ≤ tn−1 ≤ tn.

Wiener process is the basis of the interpolation construction of
functional integral.Its conditional probability density is

p (W2, t2|W1, t1) =
1

[4π(t2 − t1)]1/2
e−(W2−W1)2/2(t2−t1) .
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In SDE the external field is a representative of a Wiener process

ϕ(t) = ϕ(0) +

t
∫

0

[−Kϕ+ U(ϕ)] du+

t
∫

0

B(ϕ)dW ,

defining the measure in the stochastic integral (last term of right
side). With the reference point at the right of the elementary
interval (ϑ = 0) this is the famous stochastic integral of Itô

N
∑

i=1

B (ϕi−1) (Wi −Wi−1) .

With the midpoint reference (ϑ = 1/2) we arrive at the
Stratonovich integral. Both are widely used.



Jacobi determinant due to Wiener process
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Jacobi determinant now contains representatives of the Wiener process

detM(W ) =
N
∏

i=1

{1 + ϑ [K − U ′(ϕi)] (ti − ti−1)− ϑB′(ϕi) (Wi −Wi−1)} ,

present in the exponential of the generating function as well:

exp
N
∑

i=1

ϕ̃iB (ϕi) (Wi −Wi−1) .

Expectation value wrt Wiener process readily calculated with the use the
characteristic function (Pourier transform of the PDF) satisfying

〈exp [ip(W2 −W1)]〉 = exp

[

−
1

2
(t2 − t1)p

2

]

, t2 > t1 .



Characteristic function of the Langevin equation
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Expectation value of the factor containing the Wiener process in the
integrand of the generating function (ϕi = ϑϕi + (1− ϑ)ϕi−1, 0 ≤ ϑ ≤ 1)

〈

detM(W ) exp

[

N
∑

i=1

ϕ̃iB (ϕi) (Wi −Wi−1)

]〉

=
N
∏

i=1

{1 + ϑ [K − U ′(ϕi)] (ti − ti−1)− ϑϕ̃B(ϕi)B
′(ϕi) (ti − ti−1)}

× exp
1

2

N
∑

i=1

[ϕ̃iB (ϕi)]
2 (ti − ti−1)

≈ exp
N
∑

i=1

{

1

2
[ϕ̃iB (ϕi)]

2 + ϑ [K − U ′(ϕi)− ϕ̃B(ϕi)B
′(ϕi)]

}

(ti − ti−1) .



De Dominicis-Janssen action of Langevin equation
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Generating function of the Langevin equation (Wiener process)

dϕ = [−Kϕ+ U(ϕ)] dt+B(ϕ)dW

is expressed as the functional integral

G(A)=

∫

Dϕ

∫

Dϕ̃ exp

∫

dt

{

1

2
[ϕ̃B (ϕ)]2 + ϕ̃ [−∂tϕ−Kϕ+ U(ϕ)]

− ϑ [−K + U ′(ϕ) + ϕ̃B(ϕ)B′(ϕ)] + Aϕ

}

.

Ambiguity remains even with normal form: Itô interpretation of SDE ϑ → 0;
Stratonovich ϑ → 1

2
(upon that, no explicit closed loops in PT)

S ′ =

∫

dt

{

1

2
[ϕ̃B (ϕ)]2 + ϕ̃ [−∂tϕ−Kϕ+ U(ϕ)] + ϑ ϕ̃B(ϕ)B′(ϕ)

}
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Does appear. White-noise limit interesting as such.

Now a smooth random field f in the Jacobi determinant

detM(W ) =
N
∏

i=1

{1 + ϑ [K − U ′(ϕi)− B′(ϕi)fi] (ti − ti−1)} ,

and in exponential of the generating function

exp
N
∑

i=1

ϕ̃iB (ϕi) fi (ti − ti−1) .Characteristic function of

coloured noise (Cmn – correlation matrix)

〈

exp

[

i
∑

m

pmfm

]〉

= exp

[

−
1

2

∑

m,n

pmCmnpn

]

.



Coloured noise nonlocal
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Coloured noise: two-fold integrals. Average Jacobian to second order in time
increments to collect relevant terms (U ′(ϕi) → U ′

i , ti − ti−1 → ∆ti)

N
∏

i=1

{1 + ϑ [K − U ′
i −B′

ifi] ∆ti} = 1 +
N
∑

i=1

ϑ [K − U ′
i − B′

ifi] ∆ti

+
1

2

N
∑

i 6=j=1

ϑ2 [K − U ′
i −B′

ifi]
[

K − U ′
j −B′

j)fj
]

∆ti∆tj +O(∆t3) .

〈

detM(W ) exp
N
∑

i=1

ϕ̃iBifi∆ti

〉

≈ exp

{

N
∑

i=1

ϑ [K − U ′
i ] ∆ti

+
N
∑

i,j=1

[

1

2
ϕ̃iBiCijϕ̃jBj − ϑϕ̃iBiCijB

′
j +

1

2
ϑ2B′

iCijB
′
j

]

∆ti∆tj

}

.



Coloured noise: De Dominicis-Janssen action
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Generating function of the Langevin equation (coloured noise)

dϕ = [−Kϕ+ U(ϕ)] dt+B(ϕ)fdt

is expressed as the functional integral (B(ϕ(t)) → Bt etc.)

G(A)=

∫

Dϕ

∫

Dϕ̃ exp

∫

dt

{

ϕ̃ [−∂tϕ−Kϕ+ U ]−ϑ [−K + U ′]+Aϕ

}

+

∫

dt

∫

dt′
{

1

2
ϕ̃tBtC(t, t′)ϕ̃tBt′−ϑϕ̃tBtC(t, t′)B′

t′+
1

2
ϑ2B′

tC(t, t′)B′
t′

}

.
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Normal-form action independent of ϑ = ∆12(0) (but contains
explicit propagator)

S ′ =

∫

dt

{

ϕ̃ [−∂tϕ−Kϕ+ U ] + Aϕ

}

+

∫

dt

∫

dt′
{

1

2
ϕ̃tBtC(t, t′)ϕ̃tBt′+ϕ̃tB

′
t∆12(t, t

′)C(t, t′)Bt′

}

.

White-noise limit unambiguous and yields Stratonovich form

C(t, t′) → δ(t− t′) , ∆12(t, t
′)C(t, t′) →

1

2
δ(t− t′) ,

Perturbation theory relies on normal form, interpolation formulas
for functional integral are trickier (apart from the Itô case).
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