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Markov processes of discrete variables are described by master
equations.

Consider a jump process (birth-death process), whose PDF obey
a generic master equation

∂

∂t
P (n, t|m, t0)

=
∑

l

[W (n|l, t)P (l, t|m, t0)−W (l|n, t)P (n, t|m, t0)] .

Transition probabilities per unit time W (n|l, t) are usually given
in the model.

Calculation of expected values in terms of QFT due to Doi.



Verhulst model (directed percolation)
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Expected value of individuals obeys the rate equation

dn

dt
= −βn+ λn− γn2 .

In the stochastic version (due to Feller) the PDFs obey

dP (t, N)

dt
= λ(N − 1)P (t, N − 1)−

(

βN + γN2
)

P (t, N) ,

dP (t, n)

dt
= [β(n+ 1) + γ(n+ 1)2]P (t, n+ 1) + λ(n− 1)P (t, n− 1)

−
(

βn+ λn+ γn2
)

P (t, n) , 0 < n < N ,

dP (t, 0)

dt
= (β + γ)P (t, 1) .

Reflecting upper and absorbing lower boundary. Percolation: unbounded from
above.
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The set of master equations for P (t, n) is reduced to a single
equation by ”second quantization” of Doi.

Fock space: operators â, â+, [ â, â+] = 1 and basis vectors |n 〉:

â| 0 〉 = 0 , â+|n 〉 = |n+1 〉 , â+â|n 〉 = n|n 〉 , 〈n |m 〉 = n!δnm

Master equations yield kinetic equation for state vector |Pt 〉:

|Pt 〉 =
∞
∑

n=0

P (t, n)|n 〉 ,
d|Pt 〉

dt
= L̂(â+, â)|Pt 〉 .

Formal solution is generated by the Liouville operator L̂:

|Pt 〉 = exp
[

tL̂(â+, â)
]

|P0 〉 ,



Liouville operator

Second quantization
of master equation

Master equation

Verhulst model
(directed percolation)

Fock space for master
equation

⊲ Liouville operator

Expected values

Initial Poisson
distribution

Functional integral,
coherent-state
construction

Functional integral,
perturbation theory

AMMT-2023 July 24, 2023 Functional solutions – slide 6

Liouville operator L̂ is determined by the set of master
equations; basic rules of construction:

nP (t, n)|n 〉 = â+âP (t, n)|n 〉,

nP (t, n)|n− 1 〉 = âP (t, n)|n 〉 ,

nP (t, n)|n+ 1 〉 = â+â+âP (t, n)|n 〉 .

Liouville operator for the Verhulst model:

L̂(â+, â) = β(I − â+)â+ γ(I − â+)ââ+â+ λ(â+ − I)â+â .

Normal form is needed for simple calculation of coherent matrix
elements of Liouvillian. In the third term [ â, â+] = 1 yields

L̂′(â+, â) = (β+γ)(I− â+)â+γ(I− â+)â+ââ+λ(â+−I)â+â .



Expected values
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Expected values obtained with the use of the projection vector 〈P |:

〈P | =
∞
∑

n=0

1

n!
〈n | =

∞
∑

n=0

1

n!
〈 0 |ân , 〈P | â+ = 〈P | , 〈P |n 〉 = 1 ,

〈P |O(â+â)|Pt 〉 = 〈P |

∞
∑

n=0

O(n)P (t, n)|n 〉 =
∞
∑

n=0

O(n)P (t, n)

Conservation of probability: the leftmost factor in all monomials of the
Liouville operator is (I − â+), thus 〈P |L̂ = 0 .

Doi shift: use (exp â) â+ = (â+ + I) exp â to move exp â of 〈P | to the left:

〈P |O(â+â) exp
[

tL̂(â+, â)
]

|P0 〉

= 〈 0 |O((â+ + I)â) exp
[

tL̂(â+ + I, â)
]

exp â|P0 〉 .
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It is customary to use initial Poisson distribution

P (0, n) =
nn
0e

−n0

n!
.

Leftmost factor in expected value assumes convenient form

exp â|P0 〉 = exp â
∞
∑

n=0

P (0, n)|n 〉 = exp(n0â
+)| 0 〉 .

Polynomial distribution obtained by derivatives wrt n0. Seeding
a single particle: P (0, 1) = 1 ;P (0, n) = 0 , n 6= 0 corresponds to

(exp â)â+| 0 〉 = (â++I)| 0 〉 =

[(

∂

∂n0

+ I

)

exp(n0â
+)| 0 〉

]

∣

∣

∣

∣

∣

n0=0

.
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Interpolation of functional integral by coherent states (φ ∈ C)

|Φ 〉 =
∞
∑

n=0

1

n!
φn

(

â+
)n

| 0 〉 = exp(φâ+) | 0 〉; â |Φ 〉 = φ |Φ 〉 .

Normalization of |Φ 〉 varies; here 〈Φ |Φ′ 〉 = exp(φ∗φ′) .

Resolution of the unity

I =

∫∫

dφdφ∗

2iπ
exp(−φ∗φ)|Φ 〉〈Φ | .

Coherent-state matrix element of operator in normal form

〈Φ |L̂′(â+, â)|Φ′ 〉 = L′(φ∗, φ) exp(φ∗φ′) .



Interpolation procedure for generating function
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Generating function of expected values (normal form operators, initial
Poisson; A∗, N0 are coherent state parameters)

G(A,A∗) = 〈A | expA exp
[

tL̂′(â+ + I, â)
]

|N0 〉 .

Introduce coherent-state resolutions of unities to obtain

G(A,A∗)=

∫∫

dφNdφ
∗

N

2iπ

∫∫

dφ0dφ
∗

0

2iπ
〈A | exp(A− φ∗

NφN − φ∗

0φ0)|ΦN 〉

× 〈Φn | exp
[

tL̂′(â+ + I, â)
]

|Φ0 〉〈Φ0 |N0 〉=

∫∫

dφNdφ
∗

N

2iπ

∫∫

dφ0dφ
∗

0

2iπ

×exp(A∗φN+A−φ∗

NφN−φ∗

0φ0+φ∗

0n0)〈ΦN | exp
[

tL̂′(â+ + I, â)
]

|Φ0 〉 .
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Split evolution exponential

exp
[

tL̂′(â+ + I, â)
]

=
{

exp
[

L̂′(â+ + I, â)t/N
]

}N

.

Introduce resolutions of unities in between. Approximate matrix
elements and exponentiate

〈Φi | exp
[

L̂′(â+ + I, â)t/N
]

|Φi−1 〉

≈ 〈Φi |
[

1 + L̂′(â+ + I, â)t/N
]

|Φi−1 〉

= [1 + L′(φ∗

i + 1, φi−1)t/N ] exp(φ∗

iφi−1)

≈ exp [φ∗

iφi−1 + L′(φ∗

i + 1, φi−1)t/N ] .
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Interpolation through coherent-state unity resolutions yields

G(A,A∗)=

∫∫

dφ0dφ
∗

0

2iπ

N
∏

n=1

∫∫

dφndφ
∗

n

2iπ
exp

[

A∗φN + A

+φ∗

0n0 −φ∗

0φ0 −φ∗

n(φn −φn−1)+L′(φ∗

n +1, φn−1)t/N
]

.

Integral sum in exponential yields dynamic action

N
∑

n=1

[−φ∗

n(φn − φn−1) + L′(φ∗

n + 1, φn−1)t/N ]

=
N
∑

n=1

[

−φ∗

n

φn − φn−1

∆t
+ L′(φ∗

n + 1, φn−1)∆t

]

−−−→
∆t→0

∫ t

0

[

−φ∗(u)
∂φ

∂u
+ L′(φ∗(u) + 1, φ(u))

]

du .
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Derivatives wrt souce terms A∗φ(t) + A+ n0φ
∗ specify the

averaged quantity and initial condition.

The term −φ(0)∗φ(0) is not included in the time integral.
Without the Doi shift we would have had −φ(t)∗φ(t).

This term is necessary for perturbation theory. Perturbation
theory is important in practical calculations and because
”correctly defining the path integral is equivalent to constructing
a renormalized perturbation theory” (A. A Slavnov & L. D.
Faddeev).

The customary normal ordering of operators has been used.
There is no such operator ordering in the classical problem.

Perturbation theory, however, is unambiguous.
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Perturbation theory is Gaussian integrals. Standard trick:

exp

[∫ t

0

dtL′({φ∗ + 1}, {φ})

]

= exp

[∫ t

0

dtL′

({

δ

δA
+ 1

}

,

{

δ

δA∗

})]

× exp

[∫ t

0

dt (Aφ∗ + A∗φ)

] ∣

∣

∣

∣

A=A∗=0

.

yields Gaussian integral

G0(A,A
∗) =

∫∫

Dφ∗Dφ exp

[∫ t

0

dt (−φ∗∂tφ+ Aφ∗ + A∗φ)

− φ(0)∗φ(0)

]

.



Gaussian integral of the discretized problem
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Triangular matrix of quadratic form in interpolation approximation

G0(A,A
∗) ≈

∫∫

∏

j

dφ∗

jdφj

2iπ
exp

[

−

N
∑

j=1

(

φ∗

jφj − φ∗

jφj−1

)

− φ∗

0φ0

+
N
∑

j=0

(

Ajφ
∗

j + A∗

jφj

)

∆t

]

,
N
∑

j=1

(

φ∗

jφj − φ∗

jφj−1

)

+φ∗

0φ0 =
N
∑

i,j=0

φ∗

iMijφj

yields retarded propagator (without φ∗

0φ0 quadratic form is degenerate)

M =















1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















, M−1 =















1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1















.



Propagator of the repeated integral
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Discrete propagator is the matrix of the quadratic form of sources

G0(A,A
∗) ≈ exp

[

N
∑

i,j=0

A∗

i∆tM−1
ij Aj∆t

]

= exp

[

N
∑

i=0

A∗

i∆t

i
∑

j=0

Aj∆t

]

.

In the normal form interaction terms contain fields with neighbouring
subscripts: φ∗

i and φ∗

i−1. Contraction between these vanishes, because φ∗

0 = 0
and φN = 0 (sum of elements just above main diagonal):

N
∑

i,j=0

∂

∂φi

M−1
ij

∂

∂φ∗

j

N
∑

n=1

φ∗

nφn−1 =
N
∑

n=1

M−1
n−1,n = 0 .

Absence of single propagator loops due to definition of integral sum.



Propagator of the functional integral
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Continuum propagator: limit kernel of discrete quadratic form of sources

G0(A,A
∗) ≈ exp

[

N
∑

i,j=0

A∗

i∆tM−1
ij Aj∆t

]

= exp

[

N
∑

i=0

A∗

i∆t

i
∑

j=0

Aj∆t

]

−−−→
∆t→0

exp

∫ t

0

du

∫ t

0

du′A∗(u)θ(u − u′)A(u′) .

Propagator determines perturbation theory, ∂tθ(t− t′) = δ(t− t′), therefore

G0(A,A
∗) = exp

∫ t

0

du

∫ t

0

du′ A∗(u)θ(u− u′)A(u′)

=

∫∫

Dφ∗Dφ exp

∫ t

0

dt (−φ∗∂tφ+ Aφ∗ + A∗φ) .

Correct definition of Gaussian absorbed the spurious term φ(0)∗φ(0).



Perturbative functional integral and Peliti action
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Functional integral for Green functions in perturbation theory

G(A,A∗) =

∫∫

DφDφ∗ exp

{

S(φ, φ∗) +

∫ t

0

[φ(u)A∗(u) + φ∗(u)A(u)]

}

with the dynamic Peliti action (initial Poisson)

S(φ, φ∗) =

∫ t

0

dt

[

−φ∗
∂

∂t
φ+ L′(φ∗ + 1, φ)

]

+ n0φ
∗(0) .

For the Verhulst model the Peliti action is

S =

∫ t

0

dt

{

φ∗

[

−
∂

∂t
φ+ (λ− β − γ)φ

]

− γφ∗φ2 + λφ∗2φ− γφ∗2φ2

}

+n0φ
∗(0) .

Coherent-state construction: action in normal form, no closed loops of
single propagator! The propagator at coinciding arguments is not defined!



Word of warning on the normal form
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The stationarity equations of Peliti action should reproduce the rate equation.
Check on Verhulst model:

δS

δφ∗
= −

dφ

dt
+ (λ− β − γ)φ− γφ2 + 2λφ∗φ− 2γφ∗φ2 = 0 ,

δS

δφ
=

dφ∗

dt
+ (λ− β − γ)φ∗ − 2γφ∗φ+ λφ∗2 − 2γφ∗2φ = 0 .

On the obvious solution of the latter φ∗ = 0 the former yields

dφ

dt
= (λ− β − γ)φ− γφ2 , but

dn

dt
= −βn+ λn− γn2 .

Liouville operators are equal L̂′(â+, â) = L̂(â+, â), Liouville functionals are
not L′(φ∗, φ) 6= L(φ∗, φ).



Correct Peliti action
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Dynamic action does not feel original ordering of operators.

Full reduction operator spans propagators on all vertices producing
single-propagator loops.

Normal ordering of Liouville operator tantamount to neglecting graphs with
single-propagator loops (Wick’s theorem).

Practical prescription: replace operators by fields in original Liouville operator
and declare absence of single-propgator loops. Result for Verhulst model

S =

∫ t

0

dt

{

φ∗

[

−
∂

∂t
φ+ (λ− β)φ

]

− γφ∗φ2 + λφ∗2φ− γφ∗2φ2

}

+n0φ
∗(0) .

This seems to be hand waving, but is corroborated by old-fashioned Green
function approach.
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