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p-functions of O(N) model

LPA equation
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Ansatz for potential
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Expanding RHS in the powers of field and equating coefficients we obtain 3
functions
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Optimisation and PMS
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Figure 1: Picture from Balog et. al arXiv:1907.01829



The gradient expansion

Advantages

V' Simplicity

v Captures all relevant IR physics even in the singular critical regime

Problems

v Gives no access to the momentum sector above \/m% + k2
v At criticality captures only the most IR physics



The vertex functions

The Wetterich equation
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The vertex functions
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To obtain the flow of the vertex functions we shall variate the Wetterich equation
with respect to ¢



The flow of vertex functions

Short hand notation )
Gr(p) = TP + Ri] ™ (p)

The flow of the first vertex
1
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The flow of the second vertex

1
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In general the flow of the I‘gl) depends on the first (n + 2) vertex functions. So we
have an infinite tower of equations



Loop momentum suppression

The factor 0 Ry (q) suppresses contributions from the momentum ¢? > k2. Hence
the reasonable approximation is to neglect dependence on the loop momentum for
any vertex except propagator G(q). This approximation seems especially
reasonable for large external momenta.

The approximated flow of the second vertex

1
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Background field formalism

By the definition
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It is intuitively clear that
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Expand around arbitrary constant background ¢q
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Approximation for higher vertexes

I'k[¢] does not depend on ¢, so that

Tk (9]
o

Substituting here the expansion around ¢g one gets
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Performing Fourier transform at vanishing momentum we prove our statement,
which allows us to enclose our infinite tower of flow equations'

l]’)l;\ix()i, Méndez-Galain, Wschebor, Phys Let B,Vol. 632(4), 2006, pp. 571-578



BMW approximation for 2-point correlation function

oL (p, —p; ¢) = %Tr [atRk(Q) <Gk(Q))2 (3¢T(2) (p, —p; ¢))2 Gr(q +p)] -
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This equation allows us to track momentum dependence of inverse propagator at
any scale. On the other hand, note that

%) (0,0;¢) = Up(p) + 20U (p)
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So that LPA’ type results are easily recovered



Criticality within BMW framework

A
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Tuning the value of ma by shooting we can approach the critical regime
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Figure 2: Picture from Phys. Rev. E 80, 030103R (2009)



Critical exponents

Exponent | BMW | Monte Carlo
n 0.039 0.0368(2)
v 0.632 0.6302(1)
w 0.78 0.821(5)

At the end of the day not only we calculated non-universal function but also
improved estimates for universal exponents!



Stochastic problems

Ovp(x) = Ulz, ) + f(z);  (f(2)f(2)) = D(x,2")
Correlation functions
(p(z1) - . plzn))

Response functions
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Equivalent field theoretic model

1
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Correlation functions
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Response functions
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Regulator

(1,1) 2
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v R,(Cl’l) introduces running correlation length and time in the model

0,2) . . .
v Rli 2) introduces modifies noise correlator

Almost always Ry can be chosen time independent. There are two (rather exotic)
exceptions:

v There are frequency divergences in the model

v We expect that the radius of convergence of the DE expansion is smaller than

the range of frequencies contributing to the flow

In those exceptional cases due to causality R,(fl’l) (t > 0) =0, for example

RSV (%) = K20(—t)e/Fr(x)



Diagonal terms

Often R,(CO’Z) can be set to zero, except for the cases when its presence required by
the symmetry of the model.

Fluctuation-Dissipation Theorem

Requires
R (. g?) - BV (w.4%)

0,2

The absence of Rgf’o) together with Ito prescription guaranties that

Fk[¢7¢/:0] =0



The KPZ equation

The stochastic equation

Dup(w) = viPp + 5 (0p) + f(a); {F()F(a")) = Dot~ #)i(x — x)

Corresponding field theory
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The symmetries
Loo(t, x) = o(t,x) + c(t)

2. o(t,x) > x-v+p(t,x+tAv)
O (t,x) = @ (t,x + tAv)
3. ford=1
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The Ward Identity
Invariance of the functional measure
/D@ Se S@)+ieti'e —
Calculating variation
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Since the function ¢(t) is arbitrary the functional I'[¢, ¢'] — ¢p0y¢’ is invariant



Galilean invariance

Analogously from Galilean invariance follows the relation
Z.ap]‘_‘(m-i_l?n) (w = 07 P= Oapqa LRI pernfl) —

= A(plawl +--+ pm+n—1awm+n_1)r(m’n) (Pl; v apm+n—1)

Which in practice means that d; always enters I' only in the form of the Gallilean
covariant derrivative

Dy =8, — \9¢) D
Structure function
C(L,t) = ([p(L,t) — (0,0)]*) = L f(t/L?)

The exact relation holds
X+z=2



DE for KPZ

Ansatz

Lu(,6') = 20 Didf + &'~ 0i0(x) + %6 + 5(00)?)

Regulator

Running parameters
82Ty, 62Ty,
8 2= k— <79
q 5¢¢/ 5¢ 2

Inserting such Ansatz into the Wetterich equation and passing to the scaling
variables one can search for the fixed point solutions for the effective coupling



Strong Coupling fixed point
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Figure 3: Picture from L.Canet arXiv:cond-mat/0509541



BMWe-like scheme

Background field formalism
T (an = 0,{ai}i 6,0") = 0T\ " ({ai}s 6, ¢)

O (e} min = 0,0, ) = 051" (@i} 6,6)

But for the function F,(f’l) one should keep its signature momenta dependence

2,1
F;(c )(Q1»Q2) ~ 192

External frequencies and vertex frequencies are set to zero.
Expansion around ¢’ = 0 that keeps only the leading term
1,1 . 1,1
I (q,w,¢') = iw + ¢ ()
0,2 0,2
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Phase diagram of KPZ from modified BMW
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Figure 4: Picture from L.Canet et al arXiv:0905.1025



Thank you for attention!



