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Introductory literature

✓ J. Berges, N. Tetradis, C. Wetterich, “Non-Perturbative Renormalization Flow
in Quantum Field Theory and Statistical Physics”

arXiv:hep-ph/0005122

✓ B. Delamotte, “An Introduction to the Nonperturbative Renormalization
Group”

arXiv:cond-mat/0702365
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Setting up the language

The generating functional of Green’s functions (Partition function)

Z[J ] =

∫
Dφ exp {−S[φ] + Jφ}

Average of some operator

⟨φ(x)φ(y)⟩ = Z−1

∫
Dϕ φ(x)φ(y) exp {−S[φ]}

Which is equivalent to

⟨φ(x)φ(y)⟩ = Z(2)[J = 0] =
δ2Z[J ]

δJ(x)δJ(y)

∣∣∣∣
J=0



4/25

Connected and 1PI functionals

✓ The generating functional of connected Green’s functions (Helmholtz free
energy)

W [J ] = lnZ[J ].

By definition
δW [J ]

δJ
= ⟨φ⟩ = ϕ

✓ The Legendre transformation – 1PI Green functions (Gibbs free energy)

Γ[ϕ] = Jϕ−W [J ],

Where J meets the equation

δW [J ]

δJ

∣∣∣∣
J=J(ϕ)

= ϕ.
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Useful identities

Exponentiating Legendre transform

exp {−Γ[ϕ]} =

∫
Dφ exp {−S[φ] + J(φ− ϕ)} =

=

∫
Dφ′ exp

{
−S[φ′ + ϕ] +

δΓ

δϕ
φ′
}

Expanding S[φ′ + ϕ] up to quadratic term in φ′ and calculating Gaussian integral

Γ[ϕ] = S[ϕ] +
1

2
Tr lnS(2)[ϕ] + . . .

Another usefull identity

δ(x− y) =
δ2W [J ]

δJ(x)δϕ(y)
=

δ2W [J ]

δJ(x)δJ(z)

δJ(z)

δϕ(y)
=

δ2W [J ]

δJ(x)δJ(z)

δ2Γ[ϕ]

δϕ(z)δϕ(y)

Shorthand notations
W (2) = [Γ(2)]−1
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Mode decoupling

The idea is to separate stochastic microscopic variables φ into rapid φ(p > k) and
slow φ(p < k) modes in such a way that fluctuations of slow modes sufficiently
suppressed while rapid modes are unaffected and can be integrated out.

The generating functional of connected Green’s functions

Wk[J ] = ln

∫
Dφ exp {−S[φ]−∆Sk[φ] + Jφ} ,

with the quadratic additive

∆Sk[ϕ] =
1

2
ϕ(p)Rk(p)ϕ(−p).

We want Rk(p) behave as momentum dependent mass term.
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The properties of cut-off kernel Rk(q)

✓ Rk(p) → ∞ (or Λ) as k → ∞ (or Λ): all fluctuations are frozen

✓ Rk(p) → 0 as k → 0: all fluctuations are integrated out

✓ Rk(p) → 0 as p >> k: rapid modes are unaffected

✓ Rk(p) ≃ k2 as p << k: slow modes acquire large mass

Widely used kernels:

– the exponential shape

Rk(p) =
p2

ep2/k2 − 1

– the theta-regulator

Rk(p) = (k2 − p2)Θ(k2 − p2)
Figure 1: A typical shape of the cut-off
function.
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Effective average action

As we have seen, at zero order Γk defined through Legendre transform coincides
with the (modified) action functional

Γk[ϕ] ≃ S[ϕ] + ∆Sk[ϕ]

Modified Legendre transform

Γk[ϕ] = Jk(ϕ)ϕ−Wk[Jk(ϕ)]−∆Sk[ϕ],

where J(ϕ) meets the equation

δWk[J ]

δJ

∣∣∣∣
J=Jk(ϕ)

= ϕ.
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EAA as an interpolation functional

As k → 0 term ∆Sk[ϕ] vanishes, the model appears to be unmodified and hence

Γk=0[ϕ] = Γ[ϕ]

To find opposite limit lets employ modified version of our useful identity

exp {−Γk[ϕ]} =

∫
Dφ′ exp

{
−S[φ′ + ϕ] +

δΓk

δϕ
φ′ − 1

2
φ′Rkφ

′
}

As k → ∞

exp {−Γk→∞[ϕ]} =

∫
Dφ′ δ(φ′) exp

{
−S[φ′ + ϕ] +

δΓk→∞
δϕ

φ′
}

= exp {−S[ϕ]}

So we have natural initial condition

Γk=Λ[ϕ] = S[ϕ]

As scale k varies the functional Γk[ϕ] interpolates between mean field
approximation of the Gibbs free energy and its full functional
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The Wilson-Polchinski Equation

By definition

exp {Wk} =

∫
Dφ exp {−S[φ]−∆Sk[φ] + Jφ}

Hence

∂k exp {Wk[J ]} = −1

2

∫
Dφ

(
φ∂kRk φ

)
exp {−S[φ]−∆Sk[φ] + Jφ} =

=

(
− 1

2

∫
dq ∂kRk(q)

δ

δJ(q)

δ

δJ(−q)

)
exp {Wk[J ]}

Taking variations we arrive to the flow equation

∂Wk[J ] = −1

2
Tr

[
∂kRk

(
δ2Wk

δJδJ
+

δWk

δJ

δWk

δJ

)]
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The flow of EAA

Modified Legendre transform

Γk[ϕ] = Jkϕ−Wk[Jk]−∆Sk[ϕ],

∂kΓk[ϕ] = ∂kJkϕ− ∂kWk[Jk]−
δWk

δJk
∂kJk − ∂k∆Sk[ϕ]

By the definition of Jk(ϕ):
δWk
δJk

= ϕ

∂kΓk[ϕ] =
1

2
Tr

[
∂kRk

(
δ2Wk

δJkδJk
+

δWk

δJk

δWk

δJk

)]
− ∂k∆Sk[ϕ]

∂kΓk[ϕ] =
1

2
Tr

[
∂kRk

(
δ2Wk

δJkδJk
+ ϕϕ

)]
− 1

2
ϕ∂kRk ϕ

∂kΓk[ϕ] =
1

2
Tr

[
∂kRk

[
Γ(2) +Rk

]−1
]
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The Wetterich equation

For a scaling form of evolution we can take logarithmic derivative with respect to
scale

k∂kΓk[ϕ] =
1

2
Tr

[
k∂kRk

[
Γ(2) +Rk

]−1
]

It is convenient to introduce RG time

t = − ln
k

Λ

So that the Wetterich equation will take the form

∂tΓk[ϕ] =
1

2
Tr

[
∂tRk

[
Γ(2) +Rk

]−1
]
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The gradient expansion

The scale k plays the role of IR regulator in a sence

Γ(2) ∼ q2(q2 + k2)−η/2

As long as k stays finite we can safely expand Γk in powers of gradients around

q2 = 0

The derivative expansion is expected to converge at least up to the scale

q2 ∼ k2

Singularities start to build up as k is lowered. So one can hope that lower orders of
gradient expansion will already capture large scale physics even near the criticality.
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Ansatz

✓ Local Potential Approximation (LPA)

Γk =

∫
ddx

(
1

2
(∂ϕ)2 + Uk[ϕ]

)

✓ LPA’

Γk =

∫
ddx

(
1

2
Zk(∂ϕ)

2 + Uk[ϕ]

)

✓ O(∂2)

Γk =

∫
ddx

(
1

2
Zk[ϕ](∂ϕ)

2 + Uk[ϕ]

)
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The flow of the local potential

Evaluating EAA at uniform field ϕ we get the flow equation for local potential

∂tUk(ϕ) =
1

2

∫
ddq

∂tRk(q)

q2 +Rk(q) +
∂2Uk(ϕ)

∂ϕ2

It is conveniet to introduce ρ = 1
2 ϕ

2

∂tUk(ρ) =
1

2

∫
ddq

∂tRk(q)

q2 +Rk(q) + U ′
k(ρ) + 2ρU ′′

k (ρ)

Taking regulator in the form

Rk(q) = (k2 − q2)θ(k2 − q2)

We can perform momentum integration analytically

∂tUk(ρ) =
vd
d

kd+2

k2 + U ′
k(ρ) + 2ρU ′′

k (ρ)
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Scaling variables

To study critical behaviour it is necessary to pass to dimensionless variables

y =
q2

k2

x̃ = kx

Rk(q) = q2 r(y) = k2 y r(y)

ϕ̃(x̃) = k
2−d
2 ϕ(x)

ρ̃(x̃) = k2−dρ(x)

Ũt(ρ̃(x̃)) = k−d Uk(ρ(x))

The flow of dimensionless potential

∂tŨt = −dŨt + (d− 2)ρ̃Ũ ′
t +

4vd
d

1

1 + Ũ ′
t + 2ρ̃Ũ ′′

t
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Possible physical regimes

✓ The system is in the broken phase (T < Tc)

ϕspontanious =
√

2ρ0(k = 0); ρ0(k) = kd−2ρ̃0(t)

Minimum of Ũt(ρ̃(x̃)) flows to infinity

✓ The system is in the critical regime (T = Tc)

ρ0(k → 0) = kd−2ρ̃0(t → ∞) → 0; ρ̃0(t → ∞)− finite

✓ The system is in the symmetric phase (T > Tc)

ρ̃0(t < tξ) > 0; ρ̃0(t > tξ) = 0
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Potential approaching convexity in broken phase

Figure 2: Flow of dimensionless potential in the broken phase
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Search for the fixed potential

Generic initial potential

Ũt=0(ρ̃) =
λt=0

2
(ρ̃− ρ̃0(t = 0))2 +

ut=0

6
(ρ̃− ρ̃0(t = 0))3 + . . .

Typically proximity to the critical point is equivalent

ρ̃0(t = 0)− ρ̃0c ∼ Tc − T

One can either

✓ Integrate flow equation directly fine tuning the parameter ρ̃0(t = 0)

✓ Directly search for the fixed potential by the shooting method
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Shooting method

Fixed point condition
∂tŨ

∗ = 0

Is equivalent to the equation

0 = −dŨ∗ + (d− 2)ρ̃Ũ∗′ +
4vd
d

1

1 + Ũ∗′ + 2ρ̃Ũ∗′′

Initial condition
Ũ∗′(ϕ̃ = 0) = 0

Follows from Z2 symmetry, while second initial condition Ũ∗′′(ϕ̃ = 0) should be
tuned by shooting so that Ũ∗′(ϕ̃) stays finite for all values of ϕ
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Fixed point potential

Figure 3: Fixed point potential
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Critical behavior

RG transformation and fixed point

∂tŨ = T [Ũ ]; ∂tŨ
∗ = 0 = T [Ũ∗]

Lets consider small vicinity of fixed point Ũ∗ + δŨ

∂t

(
Ũ∗ + δŨ

)
= T [Ũ∗ + δŨ ]

∂tδŨ = T ′[Ũ∗]δŨ

Lets suppose that there is complete set of eigenvectors of the operation

T ′[Ũ∗]Vi = λiVi

And expand our perturbation

δŨ =
∑
i

δgiVi
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Critical behavior
The the flow equation in the vicinity of the fixed point will take the form

∂t

[∑
i

δgiVi

]
=

∑
i

λiδgiVi

Which is equivalent to the set of the equations

∂tδgi = λiδgi ⇒ δgi = eλit

Latter means that we can from the very beginning look for eigenvalues in the form

δŨ =
∑
i

eλitVi

Or even
δŨ = eλitVi

Then we end up with the eigenproblem

λiVi = T ′[Ũ∗]Vi
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Critical exponents

In the LPA approximation there is no wave function (field) renormalization, which
automatically means

ηLPA = 0

As for the index 1/ν we can introduce small perturbation to the fixed potential in
a form

Ũ(ρ̃) = Ũ∗(ρ̃) + ϵ et/ν V (ρ̃)

Substituting this Ansatz into the flow equation and keeping track only of linear in
ϵ terms we end up with the eigenproblem

0 = −
(
d+

1

ν

)
V (ρ̃) + (d− 2)ρ̃V ′(ρ̃)− 4vd

d

V ′(ρ̃) + 2ρ̃V ′′(ρ̃)

1 + Ũ∗′ + 2ρ̃Ũ∗′′

Solving this equation one obtains

νLPA = 0.65

To be compared with ν = 0.6297 obtained by Monte Carlo simulations
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Thank you for attention!

And I hope to see you tomorrow(=


