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Setting up the language

The generating functional of Green’s functions (Partition function)
2101 = [ Deexp{-Sldl + Jo)
Average of some operator

(o)) = 271 / D6 o(x)p(y) exp {~Sp]}

Which is equivalent to

2
(p(x)p(y)) = ZP[T = 0] = chS@:)Zci[j](z/) J=0



Connected and 1PI functionals

v The generating functional of connected Green’s functions (Helmholtz free

energy)
WI[J] =InZ[J].
By definition
WL
7 (p) =19

v" The Legendre transformation — 1PI Green functions (Gibbs free energy)

Ll = Jo — WJ],
Where J meets the equation

SWJ]

T O

J=J(¢)



Useful identities

Exponentiating Legendre transform

exp {~T[g]} = / Dy exp {~Slg] + J(p — 6)} =

/Dsoexp{ Sle' + ¢] + fslg;}

Expanding S[¢’ + ¢] up to quadratic term in ¢’ and calculating Gaussian integral

I[¢] = S[¢] + % Trin S®[¢] +

Another usefull identity

PWlI BW[] dJ(z)  SW[J] 62T[4]
8J(x)d¢(y) — 6J(x)0J(2) dp(y) — 6J(2)8J(2) 6(2)d9(y)

Shorthand notations

oz —y) =

w® = @)1



Mode decoupling

The idea is to separate stochastic microscopic variables ¢ into rapid ¢(p > k) and
slow ¢(p < k) modes in such a way that fluctuations of slow modes sufficiently
suppressed while rapid modes are unaffected and can be integrated out.

The generating functional of connected Green’s functions

WilJ] = In / Dipexp {~S[g] — ASklg] + i}

with the quadratic additive

AS16] = 56(p) Ru(P) 6(~P).

We want Ry (p) behave as momentum dependent mass term.



The properties of cut-off kernel Ry(q)

\/Rkp

oo (or A) as k — oo (or A): all fluctuations are frozen

v Rp(p) = 0 as k — 0: all fluctuations are integrated out

(p) —
(p)

v Ri(p) — 0 as p >> k: rapid modes are unaffected
(p) ~

v Ry(p) ~ k? as p << k: slow modes acquire large mass

Widely used kernels:

— the exponential shape

2
Bi(P) = —mjim 7

— the theta-regulator

Ri(p) = (k¥ — p*)O(k* — p*)

Ry (p)

kQ

i > |p|
k

Figure 1: A typical shape of the cut-off
function.



Effective average action

As we have seen, at zero order I'j, defined through Legendre transform coincides
with the (modified) action functional

T[] ~ S[¢] + ASk[¢]

Modified Legendre transform

Trl¢] = Ji(d)d — Wi[Jk(0)] — ASk[¢],

where J(¢) meets the equation

SWi[J]
6J

= 6.

J=Jr(¢)



EAA as an interpolation functional

As k — 0 term ASg[¢] vanishes, the model appears to be unmodified and hence

I=0[¢] = T'[¢]

To find opposite limit lets employ modified version of our useful identity

B
eXp{—Fk[sb]}Z/Dw’exp{—S[w’Jrcb] 5;90’—;@ Rw’}
As kK — o0
ko0
exp {—T'k—00[¢] /Dw exp{ Sl + ¢ + F§¢ w}=exp{—5[¢]}

So we have natural initial condition

Lr=alg] = S[¢]

As scale k varies the functional I'y[¢] interpolates between mean field
approximation of the Gibbs free energy and its full functional



The Wilson-Polchinski Equation

By definition
exp { W} = / Dpexp {~S[g] — ASle] + T}

Hence

exp (WilJ)} = =3 [ Do (0L ) exp (~Sle] = ASule] + I} =

4]

= <— ;/dq@kRk(q)WM(d_q)> exp {Wi[J]}

Taking variations we arrive to the flow equation

2
W] = _%Tr [akRk<5 Wy W 5Wk>]

5760 T 57 87



The flow of EAA

Modified Legendre transform
Llo] = Jip — Wil Ji] — ASk[9],

oW
OLk[d] = O dndd — O Wi [Ji] — ﬁ:aka — 8, AS) 0]

By the definition of Ji(¢): % =¢

§2Wy n oWy, 0Wy,
0JxoJ — 0Jk 0Jy

Oelke] = %Tr |:8kRk( ﬂ — OpASk[4]

5> W,
60T,

orilo] = 3 T out (50 + 06 )| - oouruo

O Trlo] = % Tr [8kRk [T® + Ry] ‘1]



The Wetterich equation

For a scaling form of evolution we can take logarithmic derivative with respect to
scale

1 —
ROTR[0] = 5 Tr |kOR R [T + Ry] ™

It is convenient to introduce RG time

i
t=—n2
A

So that the Wetterich equation will take the form

1 _
oL'[¢] = B Tr | Oy Ry, [F(2) + Ry !



The gradient expansion

The scale k plays the role of IR regulator in a sence
@ (P + kZ)fn/Q
As long as k stays finite we can safely expand I'j in powers of gradients around
=0
The derivative expansion is expected to converge at least up to the scale
P~k

Singularities start to build up as k is lowered. So one can hope that lower orders of
gradient expansion will already capture large scale physics even near the criticality.



Ansatz
v" Local Potential Approximation (LPA)

o= [ (5002 + vila])

v LPA’ .
= [ ate (520007 + 0ilo]

; 00?)
o= [ (jaldle0r + vila)



The flow of the local potential
Evaluating EAA at uniform field ¢ we get the flow equation for local potential

1 O Ry (q)
OU(6) = © /ddq
t 2) 7 "2+ Rul) + T552

It is conveniet to introduce p = %(]52

1 8,5Rk(q)
OU(p) = = [ d*
Uk () 2/ T Rela) + ULlp) + 2007 (0)
k k

Taking regulator in the form

Ri(q) = (K = ¢*)0(K* - ¢°)
We can perform momentum integration analytically
k‘d+2

UVd

Uy (p) Y k2 + Uj(p) + 2pU/ ()




Scaling variables

To study critical behaviour it is necessary to pass to dimensionless variables

The flow of dimensionless potential

4’[}d 1

tUt =+ ( )P t d 1+U£+2ﬁUtH



Possible physical regimes

v" The system is in the broken phase (7' < T)
Gspontanious = \/2p0(k = 0);  po(k) = k*2po(t)
Minimum of Uy(5(%)) flows to infinity
v" The system is in the critical regime (7" = T)
po(k — 0) = k4 250(t = 00) = 0;  po(t — oo) — finite
V" The system is in the symmetric phase (T > T,)

po(t <te) >0; po(t>te) =0



Potential approaching convexity in broken phase
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Figure 2: Flow of dimensionless potential in the broken phase



Search for the fixed potential

Generic initial potential

At=0

Ui=o(p) = > (= po(t =0))* + ——=(p— po(t =0))> + ...

Typically proximity to the critical point is equivalent
po(t=0) —po, ~Te =T

One can either
V" Integrate flow equation directly fine tuning the parameter go(t = 0)
v" Directly search for the fixed potential by the shooting method



Shooting method

Fixed point condition )
oU* =0

Is equivalent to the equation

4duy 1

0= —dU* + (d — 2)pU* + 4 _ _
(d—2)p d 150" 12507

Initial condition

U (¢=0)=0

Follows from Z; symmetry, while second initial condition (NI*”(QZ; = 0) should be
tuned by shooting so that U* (¢) stays finite for all values of ¢



Fixed point potential

-

Figure 3: Fixed point potential



Critical behavior
RG transformation and fixed point
KU =T[U];  oU*=0=T[U"

Lets consider small vicinity of fixed point U* + 6U
o (U* + 50-) — T[0 + 60

00U = T'[U*)6U
Lets suppose that there is complete set of eigenvectors of the operation
T'U*|V; = Vs

And expand our perturbation

0U =" 6g:Vi



Critical behavior
The the flow equation in the vicinity of the fixed point will take the form

Ot [Z 591%] = Z Aidgi Vi

Which is equivalent to the set of the equations
Oidgi = Nidgi = bgi=eN'
Latter means that we can from the very beginning look for eigenvalues in the form
U = Z e’\itVQ
i
Or even )
oU = MV

Then we end up with the eigenproblem

\iVi = T'UV;



Critical exponents

In the LPA approximation there is no wave function (field) renormalization, which
automatically means

nLpa =0

As for the index 1/v we can introduce small perturbation to the fixed potential in
a form

U(p) = U*(p) + e’V (p)

Substituting this Ansatz into the flow equation and keeping track only of linear in
e terms we end up with the eigenproblem

_Ava V'(p) +2pV"(p)
d 14U + 250"

1 - At~
0=—(d+-)V(p) +(d—2V'(5)
v
Solving this equation one obtains

vrpa = 0.65

To be compared with v = 0.6297 obtained by Monte Carlo simulations



Thank you for attention!

And I hope to see you tomorrow(=



