-20 -15 -10 -5 0 5 10 15 20 x (cm)

SPD setup (TDR, Jan 2023)

ARICH (in endcap) of the Belle II experiment

Installed in Oct 2017 L. Burmistrov 20.02.2019

ARICH (in endcap) of the Belle II experiment

Focusing principle

Cherenkov angle for π and K

π and K likelihoods (b) _{10⁵} (a) L(θ_c)*L(Npe) π - π 600 ĸ 104 500 400 E vents 300 10³ 102 200 100 0<u>40</u> -30 -20 -10 0 10 20 30 40 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 $L_{\pi}/(L_{\pi}+L_{K})$ $\log(L_{T}) - Log(L_{V})$ The difference between the likelihoods Likelihood ratio distribution

Efficiency of π and K identification

Fig. 15. (a) Distribution of the likelihood difference between the pion (solid line) and kaon (dashed line) at 3.5 GeV/c. (b) Likelihood ratio distribution for pions and kaons at 3.5 GeV/c.

Figure 14: Efficiency and misidentification probability as a function of the momentum: π efficiency and K misidentification probability (left), and K efficiency and π misidentification probability (right).

1 6.0

ability 9

Different PMT layouts

Single anode signal

Average of 50 single photon pulses measured on 5 GHz, 20 GS/s scope, using a Photek LPG-405 pulsed laser.

www.photek.co.uk

backup slides

What signal can we have in SPD with the PMT as a photon detector?

The most suitable type of the photocathodes for detection of the Cherenkov light is Bi-alkali (Sb-K-Cs, Rb-Sb-Cs), with sensitivity extending from ~260 to 650 nm and maximum QE≈20% between 300 and 500 nm.

N =
$$2\pi\alpha l (1/\lambda_1 - 1/\lambda_2) \sin^2\theta$$

Parameters used in calculation of the p.e. number:

- aerogel thickness ullet
- effective area of the MCP •
- sensitive area of the detector
- quantum efficiency

20 mm, n=1.045 + 20 mm, n=1.055

60%

60%

20% at 300-500 nm 10% at 270-300 and 500-550 nm

	π	К	р
1 GeV/c	44		
2	52	21	
3	54	41	1
4	54	46	26
5	54	49	36

The number of photoelectrons calculated without account of the light losses

Transmission length at λ =400 nm (from BELLE-II):

47 mm at n= 1.0451 36 mm at n= 1.0547

Then, in our case (20mm n=1.045 + 20mm n=1.055) transmission will be (roughly) ≈60%

and the number of photoelectrons, i.e. points on the Cherenkov ring

	π	K	р
1 GeV/c	26		
2	31	13	
3	32	25	
4	32	28	16
5	32	29	22

Fig. 6. Aerogel transmittance curve for aerogel ID=PDR21-2a, n=1.044, and t=20.8 mm. Circles show the transmittance measured every 10 nm by the spectrophotometer and the solid line shows the fit. The parameters obtained from the fitting with $T = A \exp(-Ct/\lambda^4)$ are A=1 and $C = 0.00533 \pm 0.00003 \ \mu \text{m}^4/\text{cm}$. The upper limit of the parameter *A* was set to 1 in the fitting procedure. The corresponding transmission length was calculated to be 50 mm at $\lambda = 400$ nm.

SPD setup (Mar 2023)

SPD setup (Mar 2023)

