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Charmed baryons
◮ SU(3) (u,d,s): M. Gell-Mann, G.Zweig (1964)

◮ SU(4) (u,d,s,c): J.D. Bjorken, S.L. Glashow (1964)

◮ GIM mechanism: S.L. Glashow, J. Iliopoulos, L. Maiani (1970)

◮ Problem: flavor changing neutral current at tree level
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Charmed baryons in one gluon exchange model
A. De Rújula, H. Georgi, S.L. Glashow, 1975.

◮ The model involves four types of fractionally charged quarks, each in
three colors, coupling to massless gauge gluons.

◮ The short-range quark-quark interaction is taken to be Coulomb-like
for the calculation of hadron masses due to the asymptotic freedom.

◮ The masses of charmed mesons and baryons have been predicted.

Numerous states with charm C=0 and C=1 were discovered.

There are precise results on the decays of single-charmed baryons

Λ+
c → pφ, Λπ+, Σ+π0; Ξ+

c → pK̄
∗ 0(892)

Three weakly decaying baryons with C=2 expected:

Ξ++
cc = ccu and Ξ+

cc = ccd isospin doublet

Ω+
cc = ccs isospin singlet



The study of the heavy-flavor-conserving nonleptonic weak decays of
heavy baryons has received a lot of attention due to their observation and
measurement of branching fractions by the LHCb and Belle Collaborations.

The decay Ξ0
c → Λ+

c + π− was first observed at LHCb experiment and
the branching fraction was measured to be B = (0.55 ± 0.02 ± 0.18)%

Recent experimental data obtained by the Belle collaboration gave the
value of B = (0.54 ± 0.05 ± 0.12)% which is in perfect agreement with
the LHCb result.

Baryons containing both an s quark and a heavy c or b quark, usually
decay via the disintegration of the heavy quark, i.e. via the decay
s → u(ūd ). There is, however, the possibility of the weak scattering
cs → dc.
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Singly charmed 1/2+ baryon states. Notation [a, b] and {a, b} for
antisymmetric and symmetric flavor index combinations.

Title Content SU(3) (I , I3) Mass (MeV)

Λ+
c c[ud ] 3̄ (0,0) 2286.46 ± 0.14

Ξ+
c c[us] 3̄ (1/2,1/2) 2467.71 ± 0.23

Ξ0
c c[ds] 3̄ (1/2,–1/2) 2470.44 ± 0.28

Σ++
c cuu 6 (1,1) 2453.97 ± 0.14

Σ+
c c{ud} 6 (1,0) 2452.65 ± 0.22

Σ0
c cdd 6 (1,–1) 2453.75 ± 0.14

Ξ′+
c c{us} 6 (1/2,1/2) 2578.2 ± 0.5

Ξ′ 0
c c{ds} 6 (1/2,–1/2) 2578.7 ± 0.5

Ω0
c css 6 (0,0) 2695.2 ± 1.7



◮ Ground states of baryons with JP = 1/2+ can decay only weakly via
the internal and external W -exchange.

◮ Two-body decays of baryons have five different quark topologies:

Ia Ib

Tree diagrams

IIa IIb III

W-exchange diagrams



The quark diagrams that contribute to the Cabibbo-favored decay
Ξ0

c → Λ+
c + π− are shown below.
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After hadronizarion, the diagram Ia factorizes out into two parts: the
weak transition Ξ0

c → Λ+
c via the W -emission and the matrix element

describing the pion leptonic decay.

The W -exchange diagrams IIa, IIb and III contribute into both the pure
quark diagrams called the short distance (SD) contributions and
effectively into the pole diagrams shown shown below. They describe the
so-called long distance (LD) contributions. For instance, the diagrams IIa
and III effectively generate the Σ0

c -resonance diagram whereas the
diagram IIb effectively generates the Ξ+

c and Ξ′+
c -resonance diagrams.
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The effective Hamiltonian needed for calculations is written as
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Here Q1 and Q2 is the set of effective four-quark operators given by

Q
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Here O
µ
L = γµ(1 − γ5) is the left-handed chiral weak matrix. We adopt

the numeration of the operators from the paper:
G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125-1144 (1996)

where the C2Q2 means the leading order whereas the C1Q1 is for
sub-leading order. The numerical values of the Wilson coefficients C1 and
C2 are being equal to

C
(u)
1 (µu) = −0.625, C

(u)
2 (µu) = 1.361, (µu = O(1GeV)),

C
(c)
1 (µc) = −0.621, C

(c)
2 (µc) = 1.336, (µc = O(mc)).

We do not include penguin operators because their Wilson coefficients are small compare with those from

current-current operators.



In the SM the relation V ∗
csVcd = −V ∗

usVud holds to an excellent
approximation. For instance, in the Wolfenstein parametrization of the
CKM-matrix, one has

V
∗
usVud = +λ(1 − λ2) + O(λ4)

V
∗
csVcd = −λ(1 − λ2) + O(λ4).

The global fit in the SM for the Wolfenstein parameter gives
λ = 0.22500 ± 0.00067. In what follows, we introduce the short notations

V
(u)
CKM = |V ∗

usVud |, and V
(c)
CKM = −|V ∗

csVcd |.

The numerical values of the CKM matrix elements are taken from PDG:

|Vud | = 0.97373 ± 0.00031, |Vus | = 0.2243 ± 0.0008,

|Vcd | = 0.221 ± 0.004, |Vcs | = 0.975 ± 0.006,

that approximately give V
(u)
CKM ≈ 0.218 and V

(c)
CKM ≈ −0.215.



Covariant Constituent Quark Model

The CCQM is based on a phenomenological relativistic Lagrangian
describing the coupling of a hadron H to its constituents:

Lint = gHH̄(x)JH(x) + H.c.

The coupling constant gH is determined from the so-called compositeness

condition, which was proposed by Salam and Weinberg.

The quark currents JH(x) have the nonlocal shapes as
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Vertex functions

Translational invariance of the vertex functions:

FH(x + a, x1 + a, . . . , xn + a) = FH(x, x1, . . . , xn) , ∀a .

Our choice:
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The matrix elements contributing to the baryon transitions Ξ0
c → Λ+

c π
−

are represented by a set of the quark diagrams shown in figure below.
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They describe the so-called short distance contributions.



The diagrams describing the the building blocks of the long distance
contributions look as following

B1 B2

Weak B1-B2 transition

B1 B2

M

Strong B1B2M coupling

The quark propagators are chosen as ordinary Dirac propagators

Sq(x1 − x2) =

∫
d 4k

(2π)4i

e−ik(x1−x2)

mq− 6k

We use the Fock-Schwinger representation for them in evaluation of the
Feynman integrals.
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2)]



Evaluation of the diagrams

Then one can arrive at the following representation for the Feynman
diagram with n-propagators.

Π =

∞∫

0

d
nα F (α1, . . . , αn) ,

where F stands for the whole structure of a given diagram.
The set of Schwinger parameters αi can be turned into a simplex by
introducing an additional t–integration via the identity
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Infrared confinement

◮ Cut off the upper integration at 1/λ2

Πc =
1/λ2
∫

0

dttn−1
1
∫

0

dnα δ
(

1 −

n
∑

i=1

αi

)

F (tα1, . . . , tαn)

◮ The infrared cut-off has removed all possible thresholds in the quark
loop diagram.

◮ We take the cut-off parameter λ to be the same in all physical
processes.



Matrix elements of the SD-contributions

MSD =
GF√
2

{
V

(u)
CKM ū(p2)
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The tree diagram factorizes into two pieces according to
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Matrix elements of the SD-contributions, cont.

The calculation of the three-loop W–exchange diagrams is much more
involved because the matrix element does not factorize. One has

DIIb = 12gB1gB2gM
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Finally, the matrix element describing the SD-contributions are written as
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Matrix elements of the LD-contributions
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ū(p2)D Σ0

c Λ+
c π−(p1, p2)S Σ0

c
(p1)D Ξ0

c Σ0
c
(p1)u(p1)

where S Σ0
c
(p1) = 1/(mΣ0

c
− 6p1).

M
Ξ
′ +
c

=
GF√
2
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Matrix elements of the LD-contributions

It appears that the strong transition Ξ0
c → Ξ+

c + π− is identically equal to
zero due to the chosen form of the interpolating quark current
ǫabcca(ubCγ5s

c).
As a result, this transition is described by the diagram which contains the
trace of a string with three quark propagators and three γ5-matrices that
gives zero contribution. Explicitly we one has

D Ξ0
c Ξ+

c π− = 6g Ξ0
c
g Ξ+

c
gπ−

[ 2∏
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∫
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× Sc(k2)tr [Su(k1 + p2)γ5Sd (k1 + p1)γ5Ss(k1 + k2)γ5] ≡ 0.

There are two kinds of the interpolating currents for the Λ-type baryons
(ΛQ ,ΞQ) whereQ = b, c. They are written as

JS = ǫabc
Q

a(ub
Cγ5s

c), scalar diquark,

JV = ǫabcγαQ
a(ub

Cγαγ5s
c) vector diquark.

The interpolating current with the vector diquark could provide the
nonvanishing transition Ξ0

c → Ξ+
c + π−.



Full amplitude

It is widely accepted that S-wave amplitude is saturated by the 1/2−

resonances. Ordinarily, their contributions are calculated by using the
well-known soft-pion theorem in the current-algebra approach. It allows
one to express the parity-violating S-wave amplitude in terms of
parity-conserving matrix elements. In our case, one has
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)
=
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Finally, the transition Ξ0
c → Λ+

c + π− amplitude is written in terms of
invariant amplitudes as

< Λ+
c π−|Heff |Ξ0

c >=
GF√
2

ū(p2) (A + γ5B) u(p1)

where A and B are given by

A = ASD + ALD, ALD = AΣ0
c
+ A

Ξ
′ +
c

+ A1/2− ,

B = BSD + BLD, BLD = BΣ0
c
+ B

Ξ
′ +
c

.



Decay width

It is more convenient to use helicity amplitudes Hλ1λM instead of invariant
amplitudes A and B

H
V
1
2

t
=

√
Q+ A , H

A
1
2

t
=

√
Q− B ,

where m± = m1 ± m2, Q± = m2
± − q2.

The two-body decay width reads

Γ(B1 → B2 + M) =
G 2

F

32π

|p2|
m2

1

HS , HS = 2
(∣∣∣HV

1
2

t

∣∣∣
2

+
∣∣∣HA

1
2

t

∣∣∣
2)

where |p2| = λ1/2(m2
1 ,m

2
2 , q

2)/(2m1).
Also it would be instructive to evaluate the asymmetry parameter defined
by

α =
|H1/2 t |2 − |H−1/2 t |2
|H1/2 t |2 + |H−1/2 t |2

= − 2κAB

A2 + κ2B2
,

where κ = |p2|/(E2 + m2) and E2 = (m2
1 + m2

2 − q2)/(2m1).



Numerical results

Model parameters have been determined by a global fit to a multitude of
decay processes.

mu/d ms mc λ

0.241 0.428 2.16 0.181 GeV

The size parameters of light meson were fixed by fitting the data on the
leptonic decay constant.

Meson ΛM(GeV) fM(MeV) f
expt

M (MeV)

Pion 0.871 130.3 130.41 ± 0.20

Since the experimental data of the single charm baryon decays become to
appear recently, we will assume for the time being that the size
parameters of all single charm baryons are the same.



Numerical results

Dependence of the branching fractions on the size parameter of a single
charm baryon.

0.5 0.55 0.6 0.65 0.7
Λ

c
 (GeV)

0

0.0025

0.005

0.0075

0.01

SD only

Expt

LD only

Total

One can see that the measured branching fraction can be accommodated
in the framework of this work by having Λc ≈ 0.61 GeV.



Numerical results

In order to estimate the uncertainty caused by the choice of the size
parameter we allow the size parameter to vary from Λmin = 0.54 to
Λmax = 0.66 GeV that correspond to the intersections of the theoretical
curve for branching fraction with the experimantal lower and upper error
bars. We evaluate the mean and the mean square deviation

Γ̄ =

N∑

i=1

Γi/N σ2 =

N∑

i=1

(Γi − Γ̄)2/N

Finally, our result for the branching fraction reads as

B
(
Ξ0

c → Λ+
c + π−

)
= (0.54 ± 0.11)%

which should be compared with the data from LHCb and Belle:

BLHCb = (0.55 ± 0.02 ± 0.18)% BBelle = (0.54 ± 0.05 ± 0.12)%

Amplitudes SD LD SD+LD

A-ampl. (GeV2) 0.0156 -0.0751 -0.0595

B-ampl. (GeV2) 0.166 -5.378 -5.212



Asymmetry parameter

It is instructive to evaluate the asymmetry parameter defined by

α =
|H1/2 t |2 − |H−1/2 t |2
|H1/2 t |2 + |H−1/2 t |2

= − 2κAB

A2 + κ2B2
,

Here κ = |p2|/(E2 + m2) and E2 = (m2
1 + m2

2 − q2)/(2m1).

The numerical value of the asymmetry parameter is found to be equal to

α = −0.75.



Numerical results

Comparison with other approaches.

Approach B(Ξ0
c → Λcπ

−)% Asymmetry

LHCb [1] 0.55 ± 0.02 ± 0.1 —

Belle [2] 0.54 ± 0.05 ± 0.12 —

Voloshin [3] > 0.025 ± 0.015 —

Gronau (constr) [4] 0.194 ± 0.070 —

Gronau (destr) [4] < 0.01 —

Faller [5] < 0.39 —

Cheng [6] 0.72 ± 0.07 0.46 ± 0.05

Niu [7] 0.58 ± 0.21 −0.16

Our model 0.54 ± 0.11 −0.75
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Summary

◮ We have studied two-body nonleptonic ∆C = 0 decay Ξ0
c → Λ+

c + π−

in the framework of the covariant confined quark model with account
for both short and long distance effects.

◮ The short distance effects are induced by four topologies of external
and internal weak W -interactions, while long distance effects are
saturated by an inclusion of the so-called pole diagrams.

◮ Pole diagrams are generated by resonance contributions of the
low-lying spin 1/2+ (Σ0

c and Ξ ′+
c ) and spin 1/2− baryons. The last

contributions are calculated by using the well-known soft-pion
theorem.

◮ It is found that the contribution of the SD diagrams is significantly
suppressed, by more than one order of magnitude in comparison with
data. The most significant contributions are coming from the
intermediate 1/2+ and 1/2− resonances.

◮ We can get consistency with the experimental data for the value of
size parameter being equal to Λ ≈ 0.60 GeV.


