CORRELATIONS OF KINEMATIC QUANTITIES FOR PIONS AND NUCLEONS IN PHSD MODEL

Natalia Kolomoyets
Joint Institute for Nuclear Research
The collective of participants:
E. E. Kolomeitsev, N. V. Kolomoyets, O. V. Teryaev, N. Tsegelnik, V. Voronyuk

DSPIN-23

September 6, 2023

MOTIVATION

- Knowledge on vorticity \Rightarrow knowledge on polarization

For fermions with spin $1 / 2$
$\Pi_{\mu}(x, p)=-\frac{1}{8} \varepsilon_{\mu \rho \sigma \tau}\left(1-n_{F}\right) \varpi^{\rho \sigma} \frac{p^{\tau}}{m}$.
[F. Becattini et al., "A study of vorticity formation in high energy nuclear collisions", EPJC 75 (2015)]

For Λ hyperons:

NICA
FAlR
RHIC

- Knowledge on correlations of kinematic characteristics of particles \Rightarrow applicability of the hydrodynamical approach to description of the fireball.
- Correlations of the kinematic quantities are related to the thermodynamical equilibrium
- In axial vortical mechanism:

Correlation of vorticities $\quad \Longleftrightarrow$ Correlation of polarizations for different types of particles for different types of particles

RELEVANT QUANTITIES AND FEATURES OF PHSD

The relevant correlations:

$$
\begin{align*}
& \mathcal{D}[\vec{v}]=\mathcal{D}\left[\vec{v}_{\pi}, \vec{v}_{N}\right]=\int \vec{v}_{\pi} \cdot \vec{v}_{N} \mathrm{~d} V / \sqrt{\int\left(\vec{v}_{\pi}\right)^{2} \mathrm{~d} V \cdot \int\left(\vec{v}_{N}\right)^{2} \mathrm{~d} V} \tag{1}\\
& \mathcal{D}[\vec{\omega}]=\mathcal{D}\left[\vec{\omega}_{\pi}, \vec{\omega}_{N}\right]=\int \vec{\omega}_{\pi} \cdot \vec{\omega}_{N} \mathrm{~d} V / \sqrt{\int\left(\vec{\omega}_{\pi}\right)^{2} \mathrm{~d} V \cdot \int\left(\vec{\omega}_{N}\right)^{2} \mathrm{~d} V} \tag{2}
\end{align*}
$$

Parton-Hadron-String Dynamics (PHSD) transport approach, based on solution of the Kadanoff-Baym equations in first-order gradient expansion in phase space [http://theory.gsi.de/-ebratkov/phsd-project/PhSD/].

Fluidization:

$$
\begin{align*}
& \text { Velocity ('Eckart definition'): } \\
& \qquad \begin{array}{l}
\vec{v}=\langle\vec{p} / E\rangle ; \\
\text { Vorticity (non-relativistic choice): } \\
\qquad \vec{\omega}=\frac{1}{2} \operatorname{rot} \vec{v} .
\end{array} \tag{3}
\end{align*}
$$

COLLISION SYSTEM

- $A u+A u$
- $\sqrt{s_{N N}}=7.8 \mathrm{GeV}$
- $b=7.5 \mathrm{fm}$

From https://cerncourier.com/a/participants-and-spectators-at-the-heavy-ion-fireball/
In practice, spectators and participants are splitted on rapidity:
if ||y| - y_beam| > 0.27 : else:
<spectator>

$$
\begin{equation*}
y=\frac{1}{2} \ln \frac{1+|\vec{p} / E|}{1-|\vec{p} / E|} \tag{5}
\end{equation*}
$$

We remove spectators from the consideration

CORRELATIONS

The velocities of pions and nucleons are correlated, the vorticities - not.

- $\mathcal{D}[\langle\vec{v}\rangle] \approx 1$.
- Decrease of $\mathcal{D}[\vec{v}]$ at $t \sim 3.5-4.5 \mathrm{fm} / \mathbb{c}$.

Will be considered in the talk

- $\mathcal{D}[\langle\vec{\omega}\rangle]$ is significantly lower than $\mathcal{D}[\langle\vec{v}\rangle]$, in particular at $t \sim 3-4 \mathrm{fm} / \mathbb{C}$.

Will be considered in the talk

CORRELATIONS

The velocities of pions and nucleons are correlated, the vorticities - not.

- $\mathcal{D}[\langle\vec{v}\rangle] \approx 1$.
- Decrease of $\mathcal{D}[\vec{v}]$ at $t \sim 3.5-4.5 \mathrm{fm} / \mathbb{c}$.

Will be considered in the talk

- $\mathcal{D}[\langle\vec{\omega}\rangle]$ is significantly lower than $\mathcal{D}[\langle\vec{v}\rangle]$, in particular at $t \sim 3-4 \mathrm{fm} / \mathbb{C}$.

Will be considered in the talk

EVOLUTION OF MULTIPLICITIES AND VOLUME OF THE FIREBALL

CONTRIBUTIONS OF DIFFERENT COMPONENTS

$$
\begin{aligned}
& \mathcal{D}\left[\vec{v}_{\pi}, \vec{v}_{N}\right]=\frac{1}{G} \int \vec{v}_{\pi} \cdot \vec{v}_{N} \mathrm{~d} V \quad \mathcal{D}_{i}\left[\vec{v}_{\pi}, \vec{v}_{N}\right]=\frac{1}{G} \int\left(v_{\pi}\right)_{i} \cdot\left(v_{N}\right)_{i} \mathrm{~d} V \quad G=\sqrt{\int\left(\vec{v}_{\pi}\right)^{2} \mathrm{~d} V \cdot \int\left(\vec{v}_{N}\right)^{2} \mathrm{~d} V} \\
& \mathcal{D}[\vec{v}] \approx \mathcal{D}_{z}[\vec{v}] \quad \mathcal{D}_{z}[\vec{\omega}] \approx 0 \text {; proportion } \mathcal{D}_{y}[\vec{\omega}] / \mathcal{D}_{x}[\vec{\omega}] \text { changes with time }
\end{aligned}
$$

THE DIP IN D[V] (QUALITATIVELY)

Spatial distribution of v_{z} :

DIFFERENCE IN DEPENDENCIES

A guess: there is a contribution in \vec{v} not influencing rot \vec{v}

$$
\Downarrow
$$

microscopic' Hubble flow

The idea: subtract the Hubble contribution from \vec{v} and look at the correlations of the residuals
[Just v_{z} components are considered]

DIFFERENCE IN DEPENDENCIES: SUBTRACTION OF H

For $t>6 \mathrm{fm} / \mathbb{C}$

$$
\mathcal{D}\left[\vec{v}-H z \vec{e}_{z}\right] \approx \mathcal{D}[\vec{\omega}]
$$

$$
\Downarrow
$$

At $t>6 \mathrm{fm} / \mathbb{C}$ the enhancement of $\mathcal{D}[\vec{v}]$ is due to the Hubble contribution to the velocities

DIFFERENCE IN DEPENDENCIES: THE FINAL RESULT

※ Subtraction of the linear contribution + simultaneous cut on ω_{x} and ω_{y} :

$$
\begin{equation*}
\left|\omega_{x}\right|>\varkappa_{x}\langle | \omega_{x}| \rangle \text { and }\left|\omega_{y}\right|>\varkappa_{y}\langle | \omega_{y}| \rangle \tag{6}
\end{equation*}
$$

$t, \mathrm{fm} / \mathbb{C}$	3.06	3.17	3.30	3.52
\varkappa_{x}	0	0.001	0.01	0.96
\varkappa_{y}	0.97	1.11	0.82	0
$V_{\text {used }} / V_{\text {total }}$	0.48	0.30	0.42	0.29

※ The cut Eq. (6) (the Hubble constant couldn't be got here)

$t, \mathrm{fm} / \mathbb{C}$	4.55	4.66	5.35
\varkappa_{x}	0.02	0	0
\varkappa_{y}	0.58	0.64	0.98
$V_{\text {used }} / V_{\text {total }}$	0.66	0.65	0.35

※ Subtraction of the linear contribution + rotation of the field \vec{v}_{N} around y-axis until $\mathcal{D}\left[\left\langle\vec{v}_{N}^{\prime}\right\rangle,\left\langle\vec{v}_{\pi}\right\rangle\right]=\mathcal{D}\left[\left\langle\vec{\omega}_{N}^{\prime}\right\rangle,\left\langle\vec{\omega}_{\pi}\right\rangle\right]$

$t, \mathrm{fm} / \mathbb{C}$	3.75	3.97	4.20
α	0.26	0.57	0.52

DIFFERENCE IN DEPENDENCIES: THE FINAL RESULT

- In accordance with the origin of the difference between $\mathcal{D}\left[\vec{v}_{\pi}, \vec{v}_{N}\right]$ and $\mathcal{D}\left[\vec{\omega}_{\pi}, \vec{\omega}_{N}\right]$, the considered time interval may be divided by 5 stages. They correspond to the different stages of the collision.
- For the all stages, except of IV-th one, the influence of the Hubble expansion is significant.

For the V-th stage, the Hubble expansion is only one reason of the difference.

- In the III-rd stage, the influence of non-parallelism of \vec{v}_{π} and \vec{v}_{N} is noticeable.
- At the stages II and IV, the regions with small values of the vorticity significantly decrease $\mathcal{D}\left[\vec{\omega}_{\pi}, \vec{\omega}_{N}\right]$.

Note: the intermediate states I-II and III-IV are also useful

CONCLUSIONS

- The high correlation of velocities of pions and nucleons is obtained.
- The main contribution to the $\mathcal{D}[\vec{v}]$ comes from the longitudinal components of the velocities.
- The lowering of $\mathcal{D}[\vec{v}]$ at times around the moment of maximal overlapping of the nuclei is connected with rotation of the surface $v_{z}=0$ around the y-axes.
- The significant difference between time dependencies of $\mathcal{D}[\vec{v}]$ and $\mathcal{D}[\vec{\omega}]$ is explained:
- $\mathcal{D}[\vec{v}]$ is highly enhanced with the Hubble contribution to the velocity.
- the regions with small vorticity decrease $\mathcal{D}[\vec{\omega}]$.
- around the time of the maximal overlapping, the different orientation of the $v_{z}=0$ surfaces for pions and nucleons significantly influences $\mathcal{D}[\vec{v}]$.

After the time of the last touch of nuclei, the standard hydrodynamics is applicable, before that moment more sophisticated approaches should be used

