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Abstract

The experimental data obtained for the polarized Bjorken sum

rule Γ
p−n
1 (Q2) for small values of Q2 are approximated by the

predictions obtained in the framework of analytic QCD up to the

5th order perturbation theory, whose coupling constant does not

contain the Landau pole. We found an excellent agreement between

the experimental data and the predictions of analytic QCD, as well

as a strong difference between these data and the results obtained

in the framework of standard QCD.



1. Introduction

Polarized Bjorken sum rule (BSR) Γ
p−n
1 (Q2) (Bjorken: 1966),

i.e. the difference between the first moments of the spin-dependent

structure functions (SFs) of a proton and neutron, is a very impor-

tant space-like QCD observable (Deur, Brodsky, De Téramond:

2018), (Kuhn, Chen, Leader: 2009).

Its isovector nature facilitates its theoretical description in pertur-

bative QCD (pQCD) in terms of the operator product expansion

(OPE), compared to the corresponding SF integrals for each nu-

cleon.

Experimental results for this quantity obtained in polarized deep

inelastic scattering (DIS) are currently available in a wide range of

the spacelike squared momenta Q2: 0.021 GeV2 ≤ Q2 < 5 GeV2

(see, e.g., (Deur et al.: 2022) and references therein).



Theoretically, pQCD (with OPE) in the MS-scheme was the

usual approach to describing such quantities. This approach, how-

ever, has the theoretical disadvantage that the running coupling

constant (couplant) αs(Q
2) has the Landau singularities for small

Q2 values: Q2 ≤ 0.1 GeV2, which makes it inconvenient for esti-

mating spacelike observables at small Q2, such as BSR.



In the recent years, the extension of pQCD couplings for low

Q2 without Landau singularities called (fractional) analytic pertur-

bation theory [(F)APT)] (Shirkov, Solovtsov: 1996,1997), (Mil-

ton, Solovtsov, Solovtsova: 1997), (Shirkov: 2001) and (Bakulev,

Mikhailov, Stefanis: 2007,2007,2010) (or the minimal analytic (MA)

theory (Cvetic, Valenzuela: 2008,2011)), were applied to match

the theoretical OPE expression with the experimental BSR data

(Pasechnik et al.: 2008,2010,2012), (Ayala et al.: 2017,2018).



Following (Cvetic, Valenzuela: 2006), we introduce here the deriva-

tives (in the k-order of perturbation theory (PT))

ã
(k)
n+1(Q

2) =
(−1)n

n!

dna
(k)
s (Q2)

(dL)n
, a(k)s (Q2) =

β0α
(k)
s (Q2)

4π
= β0 a

(k)
s (Q2),

which are very convenient in the case of analytic QCD. β0 is the

first coefficient of the QCD β-function:

β(a(k)s ) = −


a(k)s





2
(β0 +

k
∑

i=1
βi



a(k)s





i
),

where βi are known up to k = 4 (Baikov, Chetyrkin, Kuhn: 2008).



The series of derivatives ãn(Q
2) can successfully replace the cor-

responding series of as-powers (see, e.g. (Kotikov, Zemlyakov:

2022)). Indeed, each derivative reduces the as power but is accom-

panied by an additional β-function ∼ a2s. Thus, each application

of a derivative yields an additional as, and thus it is indeed possible

to use a series of derivatives instead of a series of as-powers.

In LO, the series of derivatives ãn(Q
2) are exactly the same as

ans . Beyond LO, the relationship between ãn(Q
2) and ans was es-

tablished in (Cvetic, Valenzuela: 2006), (Cvetic, Kogerler, Valen-

zuela: 2010) and extended to the fractional case, where n → is a

non-integer ν, in (Cvetic, Kotikov: 2012)



In this short paper, we apply the inverse logarithmic expansion of

the MA couplants, recently obtained in (Kotikov, Zemlyakov: 2023)

for any PT order. This approach is very convenient: for LO the MA

couplants have simple representations (see (Bakulev, Mikhailov,

Stefanis: 2007,2007,2010)), while beyond LO the MA couplants

are very close to LO ones, especially for Q2 → ∞ and Q2 → 0,

where the differences between MA couplants of various PT orders

become insignificant. Moreover, for Q2 → ∞ and Q2 → 0 the

(fractional) derivatives of the MA couplants with n ≥ 2 tend to

zero, and therefore only the first term in perturbative expansions

makes a valuable contribution.



2. Bjorken sum rule

The polarized (nonsinglet) BSR is defined as the difference be-

tween the proton and neutron polarized SFs, integrated over the

entire interval x

Γ
p−n
1 (Q2) =

∫ 1
0 dx [g

p
1(x,Q

2)− gn1 (x,Q
2)].

Theoretically, the quantity can be written in the OPE form (Shuryak,

Vainshtein: 1982), (Balitsky, Braun, Kolesnichenko: 1990)

Γ
p−n
1 (Q2) =

gA
6
(1−DBS(Q

2)) +
∞
∑

i=2

µ2i(Q
2)

Q2i−2 ,

where gA=1.2762 ± 0.0005 (PDG: 2020) is the nucleon axial

charge, (1−DBS(Q
2)) is the leading-twist contribution, and µ2i/Q

2i−2

(i ≥ 1) are the higher-twist (HT) contributions.



Since we include very small Q2 values here, this representation of

the HT contributions is inconvenient. It is much better to use the

so-called “massive” representation for the HT part (introduced in

(Teryaev: 2013), (Khandramai, Teryaev, Gabdrakhmanov: 2016)):

Γ
p−n
1 (Q2) =

gA
6
(1−DBS(Q

2)) +
µ̂4M

2

Q2 +M2 ,

where the values of µ̂4 and M2 have been fitted in (Ayala et al.:

2018) in the different analytic QCD models.

In the case of MA QCD, from (Ayala et al.: 2018)

M2 = 0.439± 0.012± 0.463, µ̂MA,4 = −0.173± 0.002± 0.666 ,

where the statistical (small) and systematic (large) uncertainties

are presented.



Another form, which is correct at very small Q2 values, has been

proposed in (Gabdrakhmanov, Teryaev, Khandramai: 2017))

Γ
p−n
1 (Q2) =

gA
6
(1−DBS(Q

2)) +
µ̂4M

2(Q2 +M2)

(Q2 +M2)2 +M2σ2
,

where small value σ ≡ σρ = 145 MeV (the ρ-meson decay width)

has been used.

Up to the k-th PT order, the perturbative part has the form

D
(1)
BS(Q

2) =
4

β0
a(1)s , D
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4
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 ,

where d1, d2 and d3 are known from exact calculations. The exact

d4 value is not known, but it was recently estimated in (Ayala,

Pineda: 2022))



Converting the powers of couplant into its derivatives, we have

D
(1)
BS(Q
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4
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where bi = βi/β
i+1
0 and

d̃1 = d1, d̃2 = d2 − b1d1, d̃3 = d3 −
5

2
b1d2 − (b2 −

5

2
b21) d1,

d̃4 = d4 −
13

3
b1d3 − (3b2 −

28

3
b21) d2 − (b3 −

22

3
b1b2 +

28

3
b31) d1 .

For the case of 3 active quark flavors (f = 3), we have

d1 = 1.59, d2 = 3.99, d3 = 15.42 d4 = 63.76,

d̃1 = 1.59, d̃2 = 2.73, d̃3 = 8.61, d̃4 = 21.52 ,

i.e., the coefficients in the series of derivatives are slightly smaller.



In MA QCD, the results for BSR become as follows

Γ
p−n
MA,1(Q

2) =
gA
6
(1−DMA,BS(Q

2)) +
µ̂MA,4M

2(Q2 +M2)

(Q2 +M2)2 +M2σ2
,

where the perturbative part DBS,MA(Q
2) takes the form

D
(1)
MA,BS(Q

2) =
4

β0
A
(1)
MA,

Dk≥2
MA,BS(Q

2) =
4

β0
(A

(k)
MA +

k
∑

m=2
d̃m−1 Ã

(k)
MA,ν=m) .



M2 for σ = σρ µ̂MA,4 for σ = σρ χ2/(d.o.f.) for σ = σρ

(for σ = 0) (for σ = 0) (for σ = 0)

LO 1.592 ± 0.300 -0.168 ± 0.002 0.788

(1.631 ± 0.301) (-0.166 ± 0.001) (0.789)

NLO 1.505 ± 0.286 -0.157 ± 0.002 0.755

(1.545 ± 0.287) (-0.155 ± 0.001) (0.757)

N2LO 1.378 ± 0.242 -0.159 ± 0.002 0.728

(1.417 ± 0.241) (-0.156 ± 0.002) (0.728)

N3LO 1.389 ± 0.247 -0.159 ± 0.002 0.747

(1.429 ± 0.248) (-0.157 ± 0.002) (0.747)

N4LO 1.422 ± 0.259 -0.159 ± 0.002 0.754

(1.462 ± 0.259) (-0.157 ± 0.001) (0.754)

Table 1: The values of the fit parameters with σ = σρ (σ = 0).

3. Results

The results of calculations are presented in Table 1 and in Fig.

5. Here we use the Q2-independent M and µ̂4 values and the

twist-two parts for the cases of usual PT and APT, respectively.



In the case of using MA couplants, we see in Table 1 that the

cases σ = 0 and σ = σρ lead to very similar values for the fitting

parameters and χ2-factor. So, in Fig. 5 we show only the case

with σ = σρ. The quality of the fits is very good, as evidenced

quantitatively by the values of χ2/(d.o.f.). Moreover, our results

obtained for different PT orders are very similar to each others: the

corresponding curves in Fig. 5 are indistinguishable. One can also

see the important role of the twist-four term. Without it, the value

of Γ
p−n
1 (Q2) is about 0.16, which is very far from the experimental

data.



At Q2 ≤ 0.3 GeV2 we also see good agreement with the phe-

nomenological models: Burkert-Ioffe one (Burkert, Ioffe: 1992,1994)

and especially LFHQCD one (Brodsky, de Teramond, Dosch, Er-

lich: 2015). For larger Q2 values our results are below the results

of the phenomenological models and at Q2 ≥ 0.5 GeV2 are below

the experimental data. We hope to improve agreement with using

“massive” forms of HT higher twist contributions h2i with i ≥ 3.

This is a subject of future investigations.
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Figure 1: The results for Γp−n

1 (Q2) in the first four orders of APT with σ = σρ.

As seen in Fig. 5, the results obtained using conventional cou-

plants are not good and worse for the NLO case to compare to

the LO one. Indeed, the deterioration increases with the PT or-

der in this case (see (Pasechnik et al.: 2008,2010,2012), (Ayala

et al.: 2017,2018), (Kotikov, Zemlyakov: 2023). Thus, the use of



the “massive” twist-four form does not improve these results, since

at Q2 → Λ2i conventional couplants become to be singular, that

leads to large and negative results for the twist-two part. As the

PT order increases, usual couplants become singular for ever larger

Q2 values, while BSR tends to negative values for ever larger Q2

values. (see also Fig. 15 in (Kotikov, Zemlyakov: 2023)). Thus,

the discrepancy between theory and experiment increases with the

PT order.



6. Conclusions

We have considered the Bjorken sum rule in the framework of

MA and conventional QCD and obtained results similar to those

obtained in previous studies (Pasechnik et al.: 2008,2010,2012),

(Ayala et al.: 2017,2018), (Kotikov, Zemlyakov: 2023) for the first

4 orders of PT.

The results based on the conventional PT do not agree with the

experimental data. For some Q2 values, the PT results become

negative, since the high-order corrections are large and enter the

twist-two term with a minus sign.
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Figure 2: The results for Γp−n

1 (Q2) in the first three orders of PT.

APT in the minimal version leads to a good agreement with exper-

imental data when we used the “massive” version for the twist-four

contributions.
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Figure 3: The results for Γp−n

1 (Q2) in the first three orders of APT with σ = 0.

Consider lower Q2 values
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Figure 4: The results for Γp−n

1 (Q2) in the first four orders of APT with σ = 0.

Consider fits of experimental data at Q2 ≤ 0.5 values: with a

purpose to decreare µ̂MA,4. It is a subject of the study..
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Figure 5: The results for Γp−n

1 (Q2) in the first four orders of APT with σ = σρ.

Newertheless, there is a problem at very low Q2 values.



Now we would like to discuss the photoproduction (PhP) case,

i.e. the Q2 → 0 limit. In MA QCD,

AMA(Q
2 = 0) = 1 and ÃMA,m = 0 for m > 1

and we have

DMA,BS(Q
2 = 0) =

4

β0
and

Γ
p−n
MA,1(Q

2 = 0, σ = 0) =
gA
6
(1−

4

β0
) + µ̂MA,4 .

The finitness of cross-section in the real photon limit leads (Teryaev:

2013), (Khandramai, Teryaev, Gabdrakhmanov: 2016))

Γ
p−n
MA,1(Q

2 = 0) = 0 and, hence, µ̂
php
MA,4 = −

gA
6
(1−

4

β0
).

In the case of 3 active quarks, i.e. f = 3, we have

µ̂
php
MA,4 = −0.118 and, hence, |µ̂

php
MA,4| < |µ̂MA,4|,

shown in Table I.



This is a common situation that appears as a consequence of the

use of analytic versions of QCD for the Bjorken sum rule (see, e.g.,

Ref. (Ayala et al.: 2018)). Note that our results for µ̂4 shown in

Table I are smaller than in (Ayala et al.: 2018).

So, in our fits the finitness of cross-section in the real photon limit

is violated. We note that the results for µ̂MA,4 (shown in Table

I) obtained only with the statistical uncertanties for experimental

data. If we take into account also the systematic uncertanties,

which are very large, the results for µ̂
php
MA,4 and µ̂MA,4 are in full

agreement.

In future investigations we plan to improve this analysis by taking

several “massive” twists by analogy with twist-four one. We hope

that this will lead to better agreement with the real photon limit.


