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Motivation, main problems:

1. Our goal is to find a strict non-perturbative formulation of QCD.
A key principal problem is to construct a true vacuum which must
satisfy several requirements: (i) quantum stability (ii) color
invariance (iii) consistence with color confinement.
2. Construction of one-particle quantum states for gluons and
quarks: a principal obstacle is the absence of singlet representations
of group SU(3) implying the absence of proper definitions of
one-particle singlet quantum states for gluons and quarks. We
show that a full space of one-particle states corresponding to
non-Abelian gluons represents an infinite but countable space of
solutions described by a finite set of integer numbers.
3. results must be consistent with color and quark confinement
and hadron phenomenology.
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Main definitions of the Weyl group of SU(3)

Generators of SU(3) in fundamental representation are given by
eight Gell-Mann matrices T a

αβ = λaαβ, (α = 1, 2, 3).
Group SU(3) contains three SU(2) subgroups of I,U,V-types
generated by:

I: {T 1,T 2,T 3}, U: {T 4,T 5,
1

2
(−T 3 +

√
3T 8)},

V: {T 6,T 7,−1

2
(T 3 +

√
3T 8)}.

One can choose the Cartan basis, consisting of two Cartan
generators T 3,8, and six off-diagonal generators T p

±, p = (1, 2, 3)
or (I ,U,V )

T 1
± =

1

2
(T 1 ± iT 2), T 2

± =
1

2
(T 4 ± iT 5), T 3

± =
1

2
(T 6 ± iT 7)
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Root vectors rpα (α = 3, 8) are eigenvalues of the 2-component
operator Tα = (T 3,T 8) acting on SU(3) Lie algebra as adjoint
represn. Roots define color charges of gluons:
[Tα,T p

±] = rpαT
p
±

One has six roots in the plane (X = T 3,Y = T 8):

r1α = ±(1, 0), r2α = ±(−1

2
,

√
3

2
), r3α = ±(

1

2
,

√
3

2
)

Weyl group W of SU(3) is a symmetry
group of roots of the Lie algebra g(su(3)), and it is isomorphic to

the symmetric group S3, permutation group.
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Representations of the Weyl group

A 3-dim. vector representation Γ3 of S3 is realized by all possible
permutations of components of a vector ~V = (V1,V2,V3) in R3.
Such reprn. is reducible, and it is decomposed into a sum of two
irred. represns, Γ1 ⊕ Γ2. A non-trivial 1-dim. singlet represn Γ1 is
defined by a constraint V1 = V2 = V3 ≡ V . The
vector ~V = (V ,V ,V ) is invariant under permutations and
represents the only non-trivial irreducible singlet represn of S3.
A 2-dim. irred. represn. Γ2 is defined by constraint
V1 + V2 + V3 = 0. The equation defines a 2-dim. plane in R3

which forms invariant vector subspace under permutations of
vector components.
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Example: I,U,V-type Abelian potentials form 2-dim. reprn. Γ2:

AI
µ = (A3

µ, 0); AU
µ = (−1/2A3

µ,
√

3/2A8
µ),

AV
µ = (−1/2A3

µ,−
√

3/2A8
µ), AI

µ + AU
µ + AV

µ = 0,

Corresponding I ,U,V -type field strengths F I ,U,V
µν ∈ Γ2 If invariants

(H I ,U,V
µν )2 are equalled then they form singlet reprn. Γ1.

** Continious subgroups of SU(3) have no non-trivial 1-dim.
singlet reprns. This causes a problem of existence and construction
of a non-degenerate color invariant vacuum and single particles.
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Ansatz for singlet Weyl symmetric solutions

The Weyl group is a finite color subgroup of SU(3) and it is the
only color symmetry remaining after removing all pure gauge
degrees of freedom! Magnetic ansatz contains I ,U,V sectors:

I : A2
t = K0, A

2
r = K1, A

2
θ = K2, A1

ϕ = K4, AI
ϕ = K3

U : A5
t = Q0, A

2
r = Q1, A

5
θ = Q2, A4

ϕ = Q4, A
U
ϕ = −1

2
K3 +

√
3

2
K8

V : A7
t = S0, A

7
r = S1, A

7
θ = S2, A6

ϕ = S4, A
V
ϕ = −1

2
K3 −

√
3

2
K8

A3
ϕ=K3; A8

ϕ = K8, {Ap
ϕ : AI

ϕ + AU
ϕ + AV

ϕ = 0}∈ Γ2,

Singlet structure is provided by constraints (i = 0, 1, 2):
Qi = Si = Ki ⇒ (Ki ,Ki ,Ki ) ∈ Γ1.
If K3 = K8 then Ap

α = K3r
p
α match the root diagram rp with one

field K3. So, I ,U,V components of the Abelian field Ap
α can realize

singlet Weyl representation. Vector field Kµ=0,1,2,3 realizes four
singlet Weyl reprns.Numeric solutions confirm the singlet structure.

Dmitriy G. Pak Weyl group symmetry as an intrinsic color symmetry of QCD



The lowest energy solutions with lowest θ modes in the leading
order are given by Kµ(r , θ, t) = K̃µ(r , θ)(b1 cos(Mt) + b2 sin(Mt)

(a) (b) (c)

(d) (e) (f)

Figure: Solution profile functions in the leading order: (a) K̃1; (b) K̃2; (c)
K̃3; (d) K̃0; (e) the time averaged radial color magnetic field B3

r ; (f) the
time averaged energy density E(ρ, z) in the plane (ρ, z) in cylindrical
coordinates (g = 1,M = 1).
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Color confinement and color symmetry of the vacuum

1974-1975, Wilson, Kogut and Susskind: the vacuum should be
color invariant and non-degenerate to provide confinement of color.
1981, ‘t Hooft’s conjecture: confinement phase is described by
Abelian projected QCD
*a problem: After gauge fixing and removing all pure gauge
degrees of freedom a residual global color symmetry should
survives to define color invariant vacuum solutions. However, none
of continious subgroups of SU(3) (SU(2),U(1) or their products)
admit a non-trivial singlet representation. This implies degeneracy
of the vacuum space and spontaneous color symmetry breaking,
which excludes the color confinement, since color symmetry must
be preserved. Fortunately, this puzzle is resolved due to existence
of a discrete color subgroup, the Weyl group! which admits
non-trivial singlet irreducible representations providing a
non-degenerate color invariant vacuum and color confinement.
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Weyl symmetry and non-degenerate vacuum: example

One-loop effective potential for constant background
chromo-magnetic field is known ( //Flyvbjerg 1980). It is Weyl
invariant and has non-trivial minimums which correspond to
possible vacuum energy. Weyl symmetric solutions have higher
symmetry compare to other solutions, and the singlet solution has
the highest intrinsic color symmetry which provides the deepest
non-degenerate color singlet vacuum.

Figure: Degenerate vacuums
form Weyl reprn. Γ2 when
( ~H3

~H8) 6= 0. Not all invariants
HI ,U,V are equal.

Figure: The deepest vacuum
represents Weyl singlet when
( ~H3

~H8) = 0 implying
HI = HU = HV .
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One has 3 parameters describing constant magnetic field: (H3µν)2,

(H8µν)2, and angle θ between magnetic field vectors ~H3, ~H8. Or

one can use gauge invariant I ,U,V variables: Hp =
√

H2
µν(Ap),

(p = I ,U,V ). Weyl symmetric effective potential has an absolute
minimum at the symmetric point (H I = HU = HV ≡ H0)
describing a Weyl singlet vacuum. Weyl symmetry describes
intrinsic color properties of gluon field. Weyl symmetric gluon
solutions have higher symmetry to compare other non-Weyl
symmetric fields and form degenerate unstable vacuums. This
color symmetry has relative character, it provide relationship
between members of Wel multiplet. Non-degenerate vacuum has
intrinsic color symmetry which provides a deepest color singlet
vacuum. Note, the Weyl singlet representation is realized on field
strengths H I ,U,V , not on I ,U,V -components of the gauge
potential. We have constructed Weyl singlet stationary gluon
solutions which provide a color singlet vacuum which is stable
against quantum fluctuations /Pak, P.M. Zhang,Y. Kim, T.Tsukioka, PLB-

2018; Pak, R.-G. Cai, Y.-F. Zhou, P.M. Zhang, T.Tsukioka, PLB-2023.
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Weyl symmetric Abelian projection

Weyl symmetric Abelian projection is described by Weyl symmetric
ansatz reduced to a special case with only one non-zero Abelian
field A3

µ = A8
µ ≡ K3. A complete set of Abelian fields is given by

spherical vector harmonics forming a basis in the Hilbert space

~Am
lm =

1√
l(l + 1)

~Ljl(kr)Ylm(θ, ϕ)e iωt ,

~Ae
lm =

−i√
l(l + 1)

~∇× (~Ljl(kr)Ylm(θ, ϕ))e iωt , (1)

{~Am,e
lm } are eigenfunctions of the total angular momentum

operator with J = l ≥ 1, Jz = m, ~L - orbital momentum operator.
We use dimensionless units M̃ = Ma0, x = r/a0, τ = t/a0 with an
effective size of hadron a0. Gauge fields are localized inside a
sphere of unit radius x = 1 (a node or antinode).
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Localization of a single gluon

We start with known one-loop effective Lagrangian of SU(3) QCD

L1-l = −1

4
F̃ 2 − k0g

2F̃ 2

(
log
( g2F̃ 2

Λ4
QCD

)
− c0

)
,

where F̃ 2 ≡ F̃ 2
µν is a squared Abelian field strength of magnetic

type, and we treat k0, c0 as free parameters. Effective potential
V 1-l = −L1-l has an absolute minimum at a positive vacuum gluon
condensate value

g2B2
0µν = ΛQCD exp

(
c0 − 1− 1

2k0g2

)
.

Splitting the full gauge field strength F̃µν = Bµν + Fµν into gluon
condensate part Bµν and single gluon part Fµν one can obtain an
effective Lagrangian for a single gluon

L(2)eff [A] = −2k0g
2 (BµνFµν)2

B2
≡ −κ(BµνFµν)2
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Substituting expression for vacuum gluon condensate function
Bϕ(r , θ, t) = r j1(r) sin2 θ sin(t), one can solve Euler equation for
the single gluon potential Aϕ(r , θ, t) = a(r , θ) sin(t + φ0):

HaL
HbL

HcL

HdL

0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

x

Figure: (a) Solution f (x); (b) a radial energy density Ē/4πκ(in red); (c)
the first derivative of the energy density; (d) the second derivative of the
energy density; The bound state energy is minimal at phase shift
φ0 = ±π/2, and describes a lightest glueball with J = 0.
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Weyl symmetric quarks

Consider a simple Abelian projected QCD with Abelian gluon fields
A3,8
µ corresponding to Cartan algebra generators T3,8 = λ3,8. T3,8

have three common eigenvectors ûp

û1 = (1, 0, 0); û2 = (0, 1, 0); û3 = (0, 0, 1) with corresponding
eigenvalues represented by 2-dim. weight vectors wp

α (α = 3, 8)
Tαû

p
α = wp

α û
p
α,

w1 = (1, 1/
√

3), w2 = (−1, 1/
√

3), w3 = (0,−2/
√

3).
SU(3) quark triplet can be decomposed as: Ψ = ψ(x)pup,
where ψp(x) are Dirac spinor functions describing three color
quarks.
Substitution of the decomposition for Ψ into the quark Lagrangian
leads to the Lagrangian in explicit Weyl symmetric form:
Lq =

∑
p ψ̄

p(iγµ∂µ −m + g
2γ

µAp
µ)ψp,

where (p = I ,U,V ) Ap
µ = wp

3A3µ + wp
8A8µ – I ,U,V -components

of the gauge potentials A3,8µ defined with using weights.
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QCD equations take the form:
∂µFµν(A3) = −g

2 ψ̄
1γµψ1 + g

2 ψ̄
2γµψ2,

∂µFµν(A8) = − g

2
√
3
ψ̄1γµψ1 − g

2
√
3
ψ̄2γµψ2 + g√

3
ψ̄3γµψ3

[iγµ∂µ −m + g
2γ

µ(Ap
µ)w ]ψp = 0;

From these eqs one can derive three separated systems of eqs for
p-components for quark ψp and for two gluon fields A3,8

µ in explicit
Weyl symmetric form:
∂µFµν(Ap

w ) = −2g
3 ψ̄

pγµψp,
∂µFµν(Ap

r ) = 0;
[iγµ∂µ −m + g

2γ
µ(Ap

µ)w ]ψp = 0;
Three solutions form 3-dim Weyl representation Γ3.
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Surprisingly, there is a Weyl singlet solution for one single quark
dressed in gluon field. Consider a system of eqs. corresponding to
I-component quark and gluon fields. The system contains two
Weyl symmetric combinations of gluon fields A3,A8:
(AI )w = A3 + 1√

3
A8

(AI )r = −1
2A

3 +
√
3
2 A8

Impose constraints reducing number of gluons:
A3 = A; A8 = 1√

3
A,

With this one has: (AI )w = 4
3A, (AI )r ≡ 0.

By using a similar reduction for U,V quarks and gluons one
obtains the same system of two eqs for each quark ψp and dressing
gluon field A:
∂µFµν(A) = −g

2 ψ̄
pγµψp,

[iγµ∂µ −m + 2g
3 γ

µA]ψp = 0;
By choosing the same solution for gluon field A and for quark one
obtains Weyl singlet solution for constituent quark dressed in
singlet gluon field.
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Note that existence of quark solution from singlet Weyl
representation Γ1implies decomposition of 3-dim. quark
representation: Γ3 = Γ1 + Γ2. Indeed, quark solutions for two
quarks ψ1, ψ2 form Γ2. This can be seen by using dual Abelian
projection which produces equations for quark dressed in gluon
fields of I ,U,V type with respect to root vectors. Such Abelian
projection is realized if we choose a different basis for Cartan
subalgebra. Namely, define two generators as follows:

L = λ1+λ4+λ6 =

0 1 1
1 0 1
1 1 0

 ,Q = λ2+λ5+λ7 =

 0 −i i
i 0 −i
−i i 0

 ,

The matrices commute to each other and form Cartan subalgebra:
[L,Q] = 0.
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The matrices L,Q have three common eigenvectors u0, u± with
corresponding eigenvalues

u0 = (1, 1, 1) ∈ Γ1

Lu0 = 2u0, Qu0 = 0,

u± = (−1

2
± i
√

3

2
,−1

2
∓ i
√

3

2
, 1) ∈ Γ2,

Lu± = −u±, Qu± = ±
√

3u±,

u+u+ = 0, u−u− = 0, u+u− = u−u+ = 3

The color vector u0 belongs to the standard irreducible singlet
representation Γ1 of the Weyl group, and the color vectors u+, u−

form a two-dimensional complex irreducible vector representation
Γ2 due to the property u±1 + u±2 + u±3 = 0. One can verify that
decomposition of SU(3) quark triplet in the basis of color vectors
u0,± with corresponding quarks ψ0,± leads to similar Weyl
structure of quark solutions.
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Quark model with Weyl group symmetry

Consider interaction of quarks and gluons from the eqs of motion
∂µFµν(A3) = −g

2 ψ̄
1γµψ1 + g

2 ψ̄
2γµψ2,

∂µFµν(A8) = − g

2
√
3
ψ̄1γµψ1 − g

2
√
3
ψ̄2γµψ2 + g√

3
ψ̄3γµψ3

[iγµ∂µ −m + g
2γ

µ(Ap
µ)w ]ψp = 0;
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