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We propose a quantum model of spinning black holes. For the charged Kerr-Newman
guantum metric, the complete regularization in the domain of the ring singularity

(cos@ =0,r =0) occurs at fixing of the maximal (cut-off) energy of gravitons ki = hc/REC.
The domains of existence of one, two and several events horizons are presented

depending on parameters of the Kerr and Kerr-Newman modified metrics.

On the basis of the regular quantum Kerr-Newman metric, we propose the quantum

model of the extended electron with zero self-energy.



We will consider next classical black holes.

Schwarzschild black hole Reissner-Nordstrom black hole
r a) two event horizons b) extreme field
r. r.=1
W =0.95 c) naked singularity

M, Q

Kerr and Kerr-Newman black hole

a) two event horizons b) extreme field

c) naked singularity

i M,Q,J



Introduction

In papers [1], [2], the quantum description of black holes is presented for modified Schwarzschild
(S) and Reissner-Nordstrom (RN) geometries. Black holes contain a quantum core described by
coherent states of gravitons. Since coherent states cannot contain states with arbitrary short wave
lengths of gravitons, classical central singularities become integrable singularities with finite tidal
forces. In papers [1], [2], the short wave lengths are removed by cut-off of gravitation’s momenta
(energies). As a result, in theory, the maximum momentum (maximum energy) of gravitons
appears k,, =7%/R;. Here R; is the radius of quantum core, ¢ =1.

In the future quantum energy of gravitation, the energy cut-off will be substituted by strict
Integration and the absence of short wave lengths of gravitons in coherent states will be a natural

result of applying a more perfect quantum theory.

[1] R. Casadio, Int. J. Mod. Phys. D 31, 2250128 (2022); arxiv: 2103.00183v4 (gr-gc).
[2] R. Casadio, A. Giusti and J. Ovalle, Phys. Rev. D 105, 124026 (2022); arxiv: 2203.03252v2 (gr-qc). 4



Introduction

The aim of our effort is to extend the approach of papers [1], [2] to the modified Kerr
(K) and Kerr-Newman (KN) geometries describing quantum spinning black holes. Here,
this notation includes either spinning black holes with quantum cores and with event

horizons or spinning quantum cores without event horizons.

[1] R. Casadio, Int. J. Mod. Phys. D 31, 2250128 (2022); arxiv: 2103.00183v4 (gr-qc).
[2] R. Casadio, A. Giusti and J. Ovalle, Phys. Rev. D 105, 124026 (2022); arxiv: 2203.03252v2 (gr-qc). 5



Kerr and Kerr-Newman quantum space-time

We will use the elementary extension of the classical metric K (Curses-Cursey metric [1])

2 2 2

2rm(r darm(r)sin®@ 2 in?
d32:[1_ ( )jdt2+ 0 dtdgo—'%drz—pzd@z—zsm 9 40
P P

Here m(r) is the mass function
p° =r°+a’cos 6, A=r’-2rm(r)+a’

2:(r2+a2)2—a2Asin20, a=J/M.

The classical Kerr metric describes the geometry of an uncharged spinning black hole

with a point mass M and an angular momentum J.

[1] M. Ciirses and F. Ciirsey, J. Math. Phys. 16, 2385(1975). 6



Kerr and Kerr-Newman quantum space-time

The components of the Einstein tensor* for the Kerr metric can be presented as in [1]:

2 2
0 _ r4+(,02—r2) +32(2r2—,02) , ra‘siné _, Gl=2'
GO —2 5 m — A m-, 1 ,04
p p
2 _r? 2r(p° —r?)+a’(p°-2r? r(a’+r?
62222'0 4r m’+L2m”, G33:2 (,0 ) - ('O )m’_|_ ( - )m"’
p p p p
d 2|’2— 2 dm dZm
603:2 ( - IO )m,—a—zm", mr:_, m”: .
Jo, o, dr dr

The important observation (see [4]) is the fact that the Einstein tensor is linear in
derivatives of a mass function m(r). Any linear decomposition of the mass function

m=m,(r)+m,(r) leads to the linear decomposition of the Einstein tensor

G,*(m,a)=G,"(m,a)+G,*(m,,a).

* 1 872G
) v _ v v _
G, =R, -3, R=

o T," is the Einstein equation

[1] E. Conteras, J. Ovalle, R. Casadio, Phys. Rev. D 103, 044020 (2021); arxiv: 2101.08569v1 (gr-qc). 7



Kerr and Kerr-Newman quantum space-time

In case of J =0,Q =0, the Kerr metric turns into a classical Schwarzschild metric with
m, = GM.

In case of J =0,Q #0, the Kerr metric turns into a classical Reissner-Nordstrom metrics with
Mey (r)=GM —GQ?/2r.

ATTENTION: For the classical Kerr and Kerr-Newman metrics, the mass functions are not

changed m, = Mg =GM, My =Mgy =GM —GQZ/ZF.

By substitution of the mass functions m, and My into the Cirses-Clirsey metric, we obtain
classical Kerr and Kerr-Newman metrics in Boyer-Lindquist coordinates [1]. Hence, it follows
that the rotation does not change mass functions m(r).

The second property of the mass function is its spherical symmetry. The mass function does

not depend on 6,¢ angles.

[1] R. H. Boyer, R. W. Lindquist, J. Math. Phys. 8, 265 (1967). 8



Kerr and Kerr-Newman quantum space-time

The above properties of the mass function allow us to fully use the mathematical
apparatus for the guantum K and KN metrics, previously used for the S and RN metrics

In papers [1], [2]. Let us note that in papers [1], [2], the classical potentials are

m
vs(r):%, Vo (1) = =2

Then, for the quantum case, the Kerr metric is corrected by the following substitutions.

The Kq metric (Q =0): 5 )
m =mg, =GM —Si(—j.

T S

The KNg metric (Q = 0):

2
Mg = Meyy = GM ESi(F: j— 62? (1—(:03(%)).
7 s s

[1] R. Casadio, Int. J. Mod. Phys. D 31, 2250128 (2022); arxiv: 2103.00183v4 (gr-qc).
[2] R. Casadio, A. Giusti and J. Ovalle, Phys. Rev. D 105, 124026 (2022); arxiv: 2203.03252v2 (gr-qc).




Space-time structure of the Kerr and Kerr-Newman geometries

Let us consider the metric of the classical and quantum K and KN geometries in the Kerr-
Schild coordinates ds? = dt? — dx? — dyz _dz? _(r4 n azzz)‘lzrsm(r)x
_ 2

><{(r2 + az) 1[r(xdx + ydy)—a(xdy — ydx)] +r'zdz + dt} .
For the classical KN metric m,, =0 at r=R"/2=Q?%/2M and above metric becomes flat.
In this case, the external KN solution is joined with the internal flat space-time metric
(see, for example, [1]).
For the quantum K and KN metrics, the mass functions m,(r) in the range r € (0,) are
not zero. I. e., for the quantum K and KN metrics in the range r €(0,), there is a curved

space-time everywhere.

[1] C. A. Lopez, Phys. Rev. D 30, 313 (1984). 10



Effective energy-momentum tensor

Since the quantum Kerr metric with mass functions is already no longer a vacuum
solution of GR equations, there must exist non-zero diagonal components of the energy-
momentum tensor
G’ _
T, = ﬂG :d|ag(pg,—pr,—p9,—p¢).

8
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Effective energy-momentum tensor

For quantum KN metric, the total energy determined by the volume integral of energy density
s T," = p,(r,0)

E-= J'T \/_dV_—jdrjdyr +ay G, (r,u)=

4 _ or? _ 2(1_ .2
=Efdfjdﬂ 2r +(p*-r )p:ra (2r-p )m;(Nq_ra (pzﬂ )m&Nq _
0 -1

© R 2 2
=i_[dr [8—4Larctgi} GM Esm(r/ S)+CQZ 1—cos R sin r +
4G a r T r 2r R 2IR R

2" g zaa | ou 2T Ty 2500 3

+| 2r —2—arctg— — 2aarctg — —
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2 2 - 2 J 2 J 1 J 2 J k2
—C? 1—cos| — +(32Q sin| — —CQZcosL =M+1||—7[Q||12=M+—ukuv—7rQ||U;’.
r R, rR, R, ) 2rR; R, 2R, 16 M R; 2 n 16 M 7
For K and KN metrics

. dm d*m 2 [ r) GQ° r
J-g = p’sing; p®=r’+a’y’, p=cosd; m'=—, m"=—-, m,, =GM =Si —~ 1-cos| — | |.
9P P S dr dr? " s [st 2r [ (RS D 12




Effective energy-momentum tensor

2
LR 7 QP 1]

2R, 16 M R> 2%

”Q2|J|k5v
16 M h>

The last equality was obtained by using the relation of Ry =7#/k,, , where k,, is the
maximum (cut-off) energy of a graviton.

The total energy is finite. For K (Q=0)and KN (Q = 0) metrics there is the summand
proportional to modulus of an angular momentum |J| and to maximum energy of gravitonk,, .
For KN metric there is also a summand ~ %kjv.

In the absence of cut-off (k,, ) - «, the total energy of a spinning black hole would be

Infinite, obviously non-physical value.

13



Effective energy-momentum tensor

For quantum S [1] and RN [2] metrics, the total energies of black holes are independent

on R, and are equal toE =M.
For the quantum KN metric, we can obtain the similar result if we assume that radius Ry is
equal to 7 Q2
* 8M
Let us consider the behavior of the quantum mass function My, (r) and its first and

second derivatives in the neighbourhood of r =0.

[1] R. Casadio, Int. J. Mod. Phys. D 31, 2250128 (2022); arxiv: 2103.00183v4 (gr-qc).
[2] R. Casadio, A. Giusti and J. Ovalle, Phys. Rev. D 105, 124026 (2022); arxiv: 2203.03252v2 (gr-qc). 14



Effective energy-momentum tensor

Table 1. Dependencies My, (), My, (1), My (r) at r—0.

3
2 GQ*)(r 1GM [ r

m GM =
Hli=g ( 7 4R, ](Rj 18 7 (R§®

2
: 2 GQ? 1GM [ r
m M Z <
Malr-o [G 7 4R, )(R) 6 7R | R
” 2GM _ GQ’ 1 GM [ r
Mhovaly T37RE . 8R RS 37(R ) \RE®

We see that at R, # R, the mass function m., (r)~r , while at Ry =R{® m, (r)~r".
S S KNg q

In the first case, the singularities of the components T " are integrable. In the

second case, the components T,” are nonsingular.

15



Effective energy-momentum tensor

Really, at R, =R*, the diagonal components of the energy-momentum tensor at ' — 0

are equal to
T :<(~(—r2/,u2) at =0, -, :r ~r*/ut at u=0,
0 -0 const>0 atpy=0,  '™o [const1>0 atu=0,
2 _(~|’2/,u2 at u+#0, 3 _( ~l‘2/,u2 at u+#0,
T, =< T, =
-0 |const 2>0 atu =0, -0 |const3>0 atu=0.

In the Boyer-Lindquist coordinates [1], the point of =0, =0 is a ring singularity of the
classical KN metric. For all components T,”, the integration over volume in the domain

of r =0 leads to finite values.

[1] R.H. Boyer, R. W. Lindquist, J. Math. Phys. 8, 265 (1967). 16



Kretschmann scalar

Let us consider the behavior of the Kretschmann scalar at r — 0. For briefly, let us

introduce the denomination of K =R**R__ .

In our case at R, =R:™

K| _ ~r4/,u4 at ,u;«tO,
=0 const, #0 at u=0.

For the classical KN metric

K| ~1/1® at u#0,
0~ |~1/r® atu=0.

For the quantum KN metric with R = R¢™

~1/u* at u#0,
U0 |~1/r* atp=0.

Thus, the fixation of R, =R:™ leads in the neighborhood of r =0, to finite values of the

Kq

Kretschmann scalar, including the domain of the ring singularity of the classical KN
metric (#=0,r=0). 17



Event horizons of spinning quantum black holes

For the KN metric, let us introduce the denotation of A=r*f,,.

2 2 2
For the classical KN metric m, (r)=GM - GZQ . Then f  =1- CM G? - a2 .
r r r* r

Equality f,, =0 determines the radii of external and inner event horizons

R, =GM +./G?M?2 -GQ?-a’.

If GM2>Q%+a’, then f, =( —%)(1-%).

The case of GM? =Q’ +a” corresponds to the extreme metric with the single event horizon
R, =GM.

The case of GM* <Q? +a* corresponds to the naked singularity without event horizons. In

this case, f, >0.
18



Event horizons of spinning quantum black holes

For the quantum KN metric, a mass function my,, is determined as

2
Myng = Meng = GM ESi(RLj— GZQ (1—COS(RLJ].
Then, 4 S ' S
R, 2 RS r a’
f.=1-—H_§;j +—| 1-cos +—, R, =2GM; R;=GQ".
A r o (st r? ( ( SD 2 " 0 =6R

Equality f,,, =0 determines possible event horizons T,

r ‘ r :
- Pu2ff 1 +,81R—H2 R ,82 R, —O.
r, 7| R, Ry/R, ar; R, R, /R,

R2 q°
Here, A= RZ /4 P = RZ /4 , for the S metric B, = B, =0; for the RN metric 5, #0, S, =

for the K metric g, =0,5,#0; B, + B, =1 Is the analog of the extreme KN metric;
(,6’1 +,82) >1 is the parametric analog of the naked singularity KN

The solution of equation f,,, =0 can be express as r,/Ry = o(Rs /Ry, B, 1) 19



Event horizons of spinning quantum black holes

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R, /Ry
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RS / RH

R, /R,

b) B, =0.5;,=0.3 d) g =058 =05

Fig. 1. Radii f; of quantum event horizons for different values of R, and (5, + £,) <1.

20



Event horizons of spinning quantum black holes

It is seen from the Fig. 1 that at small R, /R,, values, multitude event horizons are
available. With increase inR; , the number of horizons decreases down to one(rq )+ .
Further increase in R leads to disappearance of all the event horizons.

As against the classical extreme KN black hole with a single event horizon R, =R, for the
quantum KN black hole with g + S, =1, the pattern describes for the values of

0<(B +p,)<1 is reproduced qualitatively. In this case, the disappearance of event
horizons occurs at rather small values of R /R, ~0.13 (see Fig. 1d).

The shadowy areas in Fig. 1 corresponds to the parameters of I, <R,. Such parameters

cannot be parameters of black holes.

21



Event horizons of spinning quantum black holes

For classical KN black holes, the case of (g + 8 )>1 corresponds to the naked KN
singularity. For quantum KN black holes at (g + 6,)>1 and R /R, <0.12 , there are
multitude event horizons (see Fig. 2). With increase in R, , the event horizons disappear.

r_q 0.9 r_q 0.97
R, 0.8 Ry, 0.8*2\%. |
07—;"0. \ ! 0,7—;‘/’ 0 0
=R s\f\)
0.6/ 0 0.6—:;39
~ ;357%0
05 = 0 O‘SS’\/%
N0 04:3%
0.47::,0‘,% : %
0.3;;?.0 ' 0»3’2\,"0
ool o 0‘2—:'2'_“‘}
0.1 0.1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.02 0.04 0.06 0.08 O.IOR 0R12
Rs/ RH 5/ H
a) p,=05,8,=0.7 b) 8,=0.7;8,=05

Fig. 2. Radii 'y of quantum event horizons for different values of R, and (5, + 5,)>1. 22



Quantum model of electron

«AJIeKMPOH MakXxe Heuc4YepriaeM, Kak U amom»

B.U.JleHUH
(1908e.)

«An electron Is iInexhaustible as well as an atom»

V.l.Lenin
(1908)



Quantum model of electron

1. Characteristic numbers:
M—>m=9110"2%g Q*—>e’=231-10" erg-cm

J ->n/2=05-1.054-10"" erg-sec G =6.67-10"° cm®/g-sec’ c=3-10" cm/sec

2Gm Ge’

2
Ry ="7-=135:10%em - =(138-10%) em® g2 [ 1} _(13.10%) em?
c’ C 2mc
e’ _
~Ge* 4 19:10°%-4 D R,=—>=2.82-10" cm
Am R a0 me
H * 2
B+, >1 R(7 =2 ® _=1.1110" cm
-22 mcC
P, = 3 24 193210 —11(?_21088 hc
RZ  1.35%-10 Kied = —— =178 MeV/
R 1.11-10°% Rs

T 135.10° =0.74-10%
H e 24



Quantum model of electron

2. So, our model of electron is a regular black hole with quantum KN metrics without

event horizons but with rotated quantum core.

2.1 The fully regularization of the quantum Kerr-Newman metric for electron takes

place at

2
T e

_ reg __
R =Rs 8 mc

=1.1-10" cm

> =

25



Quantum model of electron

3. The energy of the electron at rest

2 2
E:J'TOO«/—ng:mc2+ f (mc T e j

2mc| 2 16 R,

At R, =R{® E =mc?!l!
Consequences: a self-energy of electron disappears.

3.1 The classical consideration E_=—

5 . .
3.2 The quantum consideration _ /T\
P P—q P

In the lowest order of the perturbation theory Am ~ me®Ink}.

In our model we have solved a problem of self-energy of the charged particle: it is
absent. 26



Quantum model of electron

According to the correspondence principle, in the quantum field theory, a self-energy also
has to be absent after summation of the perturbation theory series.

3.3 Significant aspect:

Gravitation in the charged quantum Kerr-Newman (with rotation) and Reissner-Nordstrom

(without rotation) metrics compensate the electromagnetic forces in the expression for
particle energy.

27



Thank you for attention



Quantum model of electron

4. Comparison with semiclassical models of electron.

4.1 Lorentz radius (m02 _ ez/ro)

=2.82-10" cm

I, = e’
0 mCZ
4.2 Israel-Lopez-Burinskii model

(Phys. Rev. D 2, 641 (1970), Phys. Rev. D 30, 313 (1984), Universe 8, 553 (2022))

4.3 The motion of electron in repulsive Coulomb field
(J. Exp. Theor. Phys. 128, 672 (2019), Phys. Part. Nucl. 53, 1126 (2022))
e’/mc?
I = -
1+ E/mc

4.4 Quantum model of electron
Rre 7€

8 mc? 29




Electromagnetic structure of quantum model of electron in modified

Kerr-Newman space-time

For the classical KN metric, the electromagnetic potentials A, are choose in the form of [1], [2]
A = Qr(1,0,0,—asin26?).

7 ,02
As I > o electromagnetic fields are a superposition of the Coulomb field and magnetic dipole
field x=Qa. The gyromagnetic ratio x/J =Q/m which coincides with the ratio ¢/J for the
Dirac electron.
The complicated internal electromagnetic structure of a classical KN metric source is
presented, for example, in [3].
For our guantum KN metric, the electromagnetic potentials and electromagnetic structure of
source will be different. Firstly, because of existence of a quantum core with gravitons in the

coherent states and, secondly, because of the different structure of space-time.

[1] B. Carter, Phys. Rev. 174, 1559 (1968). [3] C.L.Pekeris, K. Frankowski, Phys. Rev. A 36, 5118 (1987).
[2] C. A. Lopez, Phys. Rev. D 30, 313 (1984). 30



Electromagnetic structure of quantum model of electron in modified

Kerr-Newman space-time
Really, the nonzero value of tensor of the electromagnetic filed F,, =0A | ox* —aAﬂ/axV can be written

as [1] 1

2
Fslzi_?(pz—Zrz), S F32=Qra 2cos@sin 6.

asin® @ r’+a’ p°

Further, one can obtain the components of energy-momentum tensor of the electromagnetic field (see,

. v 1 Vv 1 av
for example, [2], [3]): (Tﬂ )Q :E(_QMFMF/? +Zg‘“g Fwaj-

For the part of classical mass function mg, =-GQ?/2r , the components of the Einstein tensor divided
by 872G | coincide with energy-momentum tensor (Gﬂv )Q/S”G :(TyV)Q-

But for the part of quantum mass function mg, = —GQZ(l—cos(r/RS ))/Zr this equality is not fulfilled. To
recover the equality, it is necessary in addition to graviton condensate to take into account the properties
of effective quantum field connected with distributed charge e.

[1] D. V. Galzov, Chastitsy | polia v okrestnosti chernykh dyr. Izdatelstvo Moskovskogo Universiteta (1986).
[2] L. D. Landau and E. M. Lifshits. The classical Theory of Fields. Pergamon Press, Oxford, 1975. 1
[3] S. Weinberg, Gravitation and Cosmology. John Wiley and Sons, Inc. (1972) 3



Electromagnetic structure of quantum model of electron in modified

Kerr-Newman space-time

Elementary model: a quantum core with condensate of gravitons (kUV =178MeV)

In coherent states and with distributed charge e.

1. Asymptotic as r - o is the Coulomb field.

2. Gyromagnetic ratio is as in the Dirac theory for a point electron.

3. At collision of relativistic beams of electrons and positrons with center-of-mass system
200GeV, the deviation from the point structure of electrons is not detected up to r =10 ¢m.

32



The tasks for the nearest future

1. The study of the internal electromagnetic structure of the

spinning quantum black holes (including electron).

2. The understanding how gravitation together with rotation compensates
for electromagnetic forces in the quantum core of an electron in a way to
ensure only the manifestation of the quasipoint structure of the electron for

external electromagnetic forces

33



AToMHBIE eIMmHMUB TAKOBbI:

1. Eannuua  3apsna  (3apsaa sadektpona) e = 4,8029 X
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2. Eaunnua macce (Macca asgektpona) m = 9,108, - 107 2
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noTeHlHasa BOAOpPOAA I Maccol siapa, paBHO# GeCKOHEUHOCTH)
3 4 2
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e me Do - <1
7—-?—7—4’3590. 10
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3
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