Probing axion physics with spin

Yuri N. Obukhov

Theoretical Physics Laboratory, IBRAE, Russian Academy of Sciences

Talk at XIX Workshop on High Energy Spin Physics DSPIN23 (90th Anniversary of A. V. Efremov) 4-8 September 2023

ヘロト 人間 ト ヘヨト ヘヨト

æ

Outline

Introduction

- Dynamics of spin and fundamental physics
- 2 Axion in physics: special case of magnetoelectric effect
 - Magnetoelectricity: Theory and experiment
 - Physical analogs of axion
 - Electrodynamics in curved spacetime
- 3 Spin $\frac{1}{2}$ particle in general relativity
 - Quantum spin in external fields
 - Spin as an "axion antenna"
 - Classical spin in external fields

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Introduction

Axion in physics: special case of magnetoelectric effect Spin $\frac{1}{2}$ particle in general relativity Conclusions and Outlook

Dynamics of spin and fundamental physics

Dynamics of spin and fundamental physics

- Study of spin motion of particle with dipole moments (anomalous magnetic and electric one) is important for search of new physics beyond standard model
- Tests of foundations (Lorentz symmetry, equivalence principle, spacetime structure beyond Riemann, etc)
- Colella-Overhauser-Werner (1975) and Bonse-Wroblewski experiments - equivalence principle for quantum systems: Measured phase shift due to inertial and gravitational force
- Modern applications: heavy ion collisions physics, search for gravitational waves (new type detectors)
- Challenge: Probe axion physics via spin effects!
- Possible new role of precessing spin as an "axion antenna" to establish the nature of dark matter in the Universe.

Magnetoelectricity: Theory and experiment Physical analogs of axion Electrodynamics in curved spacetime

< 17 ▶

Magnetoelectric effect

- Classical Maxwell's electrodynamics of local linear medium
- Constitutive law for isotropic matter at rest

$$oldsymbol{D} = arepsilon arepsilon_0 oldsymbol{E} \quad ext{and} \quad oldsymbol{H} = rac{1}{\mu \mu_0} oldsymbol{B}$$

- ε_0 and μ_0 are electric and magnetic constants of vacuum, ε and μ are (relative) permittivity and permeability
- Vacuum admittance and speed of light:

$$Y_0 = \frac{1}{\Omega_0} = \sqrt{\frac{\varepsilon_0}{\mu_0}}, \quad c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

with Ω_0 as vacuum impedance of $\approx 377\Omega$

Magnetoelectricity: Theory and experiment Physical analogs of axion Electrodynamics in curved spacetime

< 🗇 🕨

Magnetoelectric effect (ME) is characterized by

General local and linear constitutive law reads

$$D^{a} = \varepsilon_{0} \varepsilon^{ab} E_{b} + Y_{0} \alpha_{1b}^{a} B^{b}$$

$$H_{a} = Y_{0} \alpha_{2a}^{b} E_{b} + \mu_{0}^{-1} (\mu^{-1})_{ab} B^{b}$$

- ε_0, Y_0 , and μ_0 are required for dimensional consistency.
- ε^{ab} , $(\mu^{-1})_{ab}$, α_{1b}^{a} , and α_{2b}^{a} dimensionless 3×3 matrices = 36 permittivity, permeability and magnetoelectric moduli.
- Nontrivial α_{1b}^a and α_{2b}^a predicted by Landau and Lifshitz for certain magnetic crystals.
- Dzyaloshinskii (1959) pointed to antiferromagnet Cr₂O₃. Astrov (1961, for an electric field, ME_E) and Rado & Folen (1962, for a magnetic field, ME_H) confirmed his predictions experimentally for uniaxial crystals of Cr₂O₃.

 In electrical engineering, in theory of two ports (four poles), Tellegen (1948) defined *gyrator* via

$$v_1 = -s \, i_2 \,, \qquad v_2 = s \, i_1 \,,$$

v are voltages and i currents of ports 1 and 2, respectively. Gyrator is nonreciprocal network element.

- Tellegen: "The ideal gyrator has the property of 'gyrating' a current into a voltage, and vice versa. The coefficient *s*, which has the dimension of a resistance, we call the gyration resistance; 1/s we call the gyration conductance."
- In terms of electromagnetic field: quantities related to *i*₁, *i*₂ are *D*, *H* and to *v*₁, *v*₂ fields *E*, *B*. Thus, with *s* = 1/α,

$$\boldsymbol{E} = -s \boldsymbol{H}, \qquad \boldsymbol{B} = s \boldsymbol{D}.$$

Gyrator 'rotates' currents into voltages and axion 'rotates' excitations into field strengths.

Magnetoelectricity: Theory and experiment Physical analogs of axion Electrodynamics in curved spacetime

 Lindell & Sihvola (2005) introduced concept of perfect electromagnetic conductor (PEMC). It obeys axion law:

 $\boldsymbol{D} = \alpha \, \boldsymbol{B}, \quad \boldsymbol{H} = -\alpha \, \boldsymbol{E}$

PEMC is a generalization of perfect electric and perfect magnetic conductor. Tretyakov et al (2003) demonstrated possibility to realize PEMC as metamaterial. No energy would propagate therein (\Rightarrow stealth technology).

Axion electrodynamics [Ni(1977)-Wilczek(1987)-Itin(2004)].
 Add to vacuum Maxwell-Lorentz an axion piece, then we have constitutive law for axion electrodynamics:

$$H = Y_0 \star F + \alpha F, \qquad Y_0 = \sqrt{\frac{\varepsilon_0}{\mu_0}}$$

For Cr_2O_3 the axion value was measured $\alpha \approx 10^{-4}Y_0$.

Introduction

Axion in physics: special case of magnetoelectric effect Spin $\frac{1}{2}$ particle in general relativity

Conclusions and Outlook

Magnetoelectricity: Theory and experiment **Physical analogs of axion** Electrodynamics in curved spacetime

Axion measured in condensed matter

Extracted from Astrov (1961), Rado-Folen (1962) for Cr_2O_3 : α in units of Y_0 as a function of temperature T; it is negative for T < 163K, positive for T > 163K, until it vanishes at Néel temperature ≈ 308 K. [See Hehl,YNO, et al, PRA **77** (2008)]
 Introduction
 Magnetoelectricity: Theory and experiment

 Axion in physics: special case of magnetoelectric effect
 Physical analogs of axion

 Spin 1/2 particle in general relativity
 Conclusions and Outlook

- In high-energy physics, one adds in Lagrangian also the kinetic term of axion $\sim g^{ij}\partial_i\alpha \,\partial_j\alpha$ and the corresponding mass term $\sim m_{(a)}^2 \,\alpha^2$. However, such a hypothetical P-odd and T-odd particle has not been found so far, in spite of considerable experimental efforts.
- We see that same properties are shared by
 - *α* in condensed matter (measured for Cr₂O₃)
 - gyrator concept
 - PEMC metamaterial
 - axion particle
- Frank Wilczek commented on these 4 structures: "It's a nice demonstration of the unity of physics."
- Could a detector made of some suitable matter (such as Cr₂O₃ crystals, e.g.) enhance probability of finding axions?

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Magnetoelectricity: Theory and experiment Physical analogs of axion Electrodynamics in curved spacetime

• • • • • • • • •

Gravitoelectromagnetism in Einstein's general relativity

• Let t be time, $x = \{x^a\}$ (a = 1, 2, 3) be spatial coordinates:

$$ds^{2} = \left(1 - \frac{\Phi}{c^{2}}\right)^{2} c^{2} dt^{2} + \frac{4}{c} (\boldsymbol{\mathcal{A}} \cdot d\boldsymbol{x}) dt - \left(1 + \frac{\Phi}{c^{2}}\right)^{2} d\boldsymbol{x} \cdot d\boldsymbol{x},$$

with gravitoelectric Φ and the gravitomagnetic \mathcal{A} potentials.

- Notation: distinguish gravitoelectromagnetic potentials
 (Φ, A) them from electromagnetic potentials A_i = (Φ, A).
- For a body with mass M and angular momentum J, the gravitoelectromagnetic fields are (Lense-Thirring, 1918):

$$\Phi = \frac{GM}{r}, \qquad \mathbf{\mathcal{A}} = \frac{G\mathbf{J} \times \mathbf{r}}{c\,r^3}$$

Here G is Newton's gravitational constant.

Magnetoelectricity: Theory and experiment Physical analogs of axion Electrodynamics in curved spacetime

Electrodynamics in curved spacetime

- Gravity is universal: affects also electromagnetism.
- Basic objects: field strength F, excitation H and current J

Maxwell's theory – without coordinates and frames

 $dF = 0, \qquad dH = J$

• Decompose 2-forms H = (H, D) and F = (E, B) into 3-vector components \implies recast Maxwell equations into

$$\nabla \times \boldsymbol{E} + \boldsymbol{B} = 0, \qquad \nabla \cdot \boldsymbol{B} = 0,$$
$$\nabla \times \boldsymbol{H} - \boldsymbol{\dot{D}} = \boldsymbol{J}^{e}, \qquad \nabla \cdot \boldsymbol{D} = \rho^{e}$$

Influence of inertia and gravity is encoded in constitutive relation between electric and magnetic fields E, B and electric and magnetic excitations D, H.

Magnetoelectricity: Theory and experiment Physical analogs of axion Electrodynamics in curved spacetime

Axion electrodynamics: constitutive law

$$H = Y_0 \star F + \alpha F, \qquad Y_0 = \sqrt{\frac{\varepsilon_0}{\mu_0}}$$

Specializing to gravitoelectromagnetic geometry, explicit constitutive relation of the axion electrodynamics reads

$$D = \varepsilon_0 \varepsilon_g \mathbf{E} + \frac{Y_0}{c^2} \mathbf{A} \times \mathbf{B} + \alpha \mathbf{B},$$

$$H = \frac{1}{\mu_0 \mu_g} \mathbf{B} + \frac{Y_0}{c^2} \mathbf{A} \times \mathbf{E} - \alpha \mathbf{E}.$$

 ● Effective "medium" is determined by gravity: gravitoelectric *Φ* describes effective permittivity and permeability

$$\varepsilon_g = \mu_g = \left(1 + \frac{\Phi}{c^2}\right)^2,$$

gravitomagnetic \mathcal{A} responsible for magnetoelectric effects.

Quantum spin in external fields Spin as an "axion antenna" Classical spin in external fields

Dirac particle in external fields

- Fermion with rest mass m, charge q, EDM & AMM $L = \frac{i\hbar}{2} \left(\overline{\Psi} \gamma^{\mu} D_{\mu} \Psi - D_{\mu} \overline{\Psi} \gamma^{\mu} \Psi \right) - mc \overline{\Psi} \Psi$ $+ \frac{\mu'}{2c} \overline{\Psi} \sigma^{\mu\nu} \Psi F_{\mu\nu} + \frac{\delta'}{2} \overline{\Psi} \sigma^{\mu\nu} \Psi \widetilde{F}_{\mu\nu} - \frac{\hbar g_f}{2f_{(a)}} \overline{\Psi} \gamma^{\mu} \gamma_5 \Psi \left(e^i_{\mu} \partial_i \alpha \right)$
- Spinor covariant derivative (with $\sigma_{\alpha\beta} = i\gamma_{[\alpha}\gamma_{\beta]}$)

$$D_{\mu} = e^{i}_{\mu}D_{i}, \qquad D_{i} = \partial_{i} - \frac{iq}{\hbar}A_{i} + \frac{i}{4}\sigma_{\alpha\beta}\Gamma_{i}{}^{\alpha\beta}$$

describes minimal coupling with gauge fields $(A_i, e_i^{\alpha}, \Gamma_i^{\beta\gamma})$. • Pauli terms with $F_{\alpha\beta}$ and dual $\widetilde{F}_{\alpha\beta} = \frac{1}{2}\eta_{\alpha\beta\mu\nu}F^{\mu\nu}$ describe non-minimal coupling to AMM and EDM of fermion

$$\mu' = a \, \tfrac{q \hbar}{2m}, \qquad \delta' = b \, \tfrac{q \hbar}{2mc}, \qquad a = \tfrac{g-2}{2}$$

• Axion coupling $g_f \sim 1$ and $f_{(a)}m_{(a)} \approx f_{\pi}m_{\pi}\frac{\sqrt{m_um_d}}{m_u+m_d}$.

.

Quantum spin in external fields Spin as an "axion antenna" Classical spin in external fields

Dirac Hamiltonian
$$\mathcal{H} = \mathcal{H}^{\text{GEM}} + \mathcal{H}^{\text{ax}}$$
 (with $\pi = -i\hbar \nabla - qA$)

$$\mathcal{H}^{\text{acc}} = mc^{-}\beta^{s} + q\Phi + \frac{1}{2}\left(\boldsymbol{\pi}\cdot\boldsymbol{\alpha}^{s} + \boldsymbol{\alpha}^{s}\cdot\boldsymbol{\pi}\right) \\ + \frac{\hbar}{2c}\boldsymbol{\Sigma}\cdot\left(\boldsymbol{\nabla}\times\boldsymbol{\mathcal{A}}\right) - \beta^{g}\left(\boldsymbol{\Sigma}\cdot\boldsymbol{\mathcal{M}} + i\boldsymbol{\alpha}\cdot\boldsymbol{\mathcal{P}}\right), \\ \mathcal{H}^{\text{ac}} = \frac{\hbar}{2}\frac{g_{f}}{f_{(a)}}\left[\frac{c}{\mu_{g}}\boldsymbol{\Sigma}\cdot\boldsymbol{\nabla}\alpha - \gamma_{5}\left(\partial_{t}\alpha + \frac{2}{c}\boldsymbol{\mathcal{A}}\cdot\boldsymbol{\nabla}\alpha\right)\right]$$

8 Here
$$\beta^g := \frac{\beta}{1 + \frac{\phi}{c^2}}$$
, $\alpha^g := \frac{\alpha}{\mu_g} + \frac{2}{c^2} \mathcal{A}$, and $\beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$,
 $\alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix}$, $\Sigma = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}$, $\gamma_5 = \begin{pmatrix} 0 & -I \\ -I & 0 \end{pmatrix}$

Last term in H^{GEM} accounts for polarization&magnetization

$$\mathcal{M} = \mu' \mathfrak{B} + \delta' \mathfrak{E} = \frac{\hbar q}{2m} \left(a \, \mathfrak{B} + \frac{b}{c} \, \mathfrak{E} \right),$$

$$\mathcal{P} = c \delta' \mathfrak{B} - \frac{\mu'}{c} \, \mathfrak{E} = \frac{\hbar q}{2m} \left(b \, \mathfrak{B} - \frac{a}{c} \, \mathfrak{E} \right),$$

$$\mathfrak{E} = \mathbf{E} + \frac{2}{c} \mathcal{A} \times \mathbf{B}, \qquad \mathfrak{B} = \frac{1}{\mu_g} \mathbf{B}$$

3

Quantum spin in external fields Spin as an "axion antenna" Classical spin in external fields

Quantum dynamics of spinning particle

Foldy-Wouthuysen representation: Semiclassical Hamiltonian

$$\mathcal{H}_{FW} = \frac{1}{1 + \frac{\Phi}{c^2}} \left[mc^2 + \frac{1}{2m} \left(\boldsymbol{\pi} + \frac{2m}{c} \boldsymbol{\mathcal{A}} \right)^2 \right] + q\Phi + \frac{\hbar}{2} \boldsymbol{\sigma} \cdot \boldsymbol{\Omega}$$

Evolution of physical spin

$$rac{dm{s}}{dt} = m{\Omega} imes m{s}, \qquad m{\Omega} = m{\Omega}^{
m em} + m{\Omega}^{
m dip} + m{\Omega}^{
m GEM} + m{\Omega}^{
m ax}$$

Precession angular velocity is the sum of four terms:

$$\begin{split} \mathbf{\Omega}^{\mathrm{em}} &= \frac{q}{m} \left[-\frac{1}{\gamma} \, \mathbf{\mathfrak{B}} + \frac{1}{\gamma+1} \frac{\widehat{\boldsymbol{v}} \times \mathbf{\mathfrak{e}}}{c^2} \right], \\ \mathbf{\Omega}^{\mathrm{dip}} &= -\frac{q}{m} \Big\{ \Big[a \Big(\mathbf{\mathfrak{B}} - \frac{\widehat{\boldsymbol{v}} \times \mathbf{\mathfrak{e}}}{c^2} - \frac{\gamma}{\gamma+1} \frac{\widehat{\boldsymbol{v}} \left(\widehat{\mathbf{v}} \cdot \mathbf{\mathfrak{B}} \right)}{c^2} \Big) + \frac{b}{c} \Big(\mathbf{\mathfrak{E}} + \widehat{\boldsymbol{v}} \times \mathbf{\mathfrak{B}} - \frac{\gamma}{\gamma+1} \frac{\widehat{\boldsymbol{v}} \left(\widehat{\boldsymbol{v}} \cdot \mathbf{\mathfrak{e}} \right)}{c^2} \Big) \Big] \Big\}, \\ \mathbf{\Omega}^{\mathrm{GEM}} &= \frac{1}{c} \, \mathbf{\nabla} \times \mathbf{\mathcal{A}} + \frac{(2\gamma+1)}{(\gamma+1)c^2} \, \widehat{\boldsymbol{v}} \times \mathbf{\nabla} \Phi, \\ \mathbf{\Omega}^{\mathrm{ax}} &= \frac{g_f}{f_{(a)}} \frac{1}{\left(1+\frac{\phi}{c^2}\right)} \, \Big\{ \frac{c}{\gamma} \, \mathbf{\nabla} \alpha + \frac{\widehat{\boldsymbol{v}}}{c} \, \Big[\mu_g \left(\partial_t \alpha + \frac{2}{c} \, \mathbf{\mathcal{A}} \cdot \mathbf{\nabla} \alpha \right) + \frac{\gamma}{\gamma+1} \, \widehat{\boldsymbol{v}} \cdot \mathbf{\nabla} \alpha \Big] \Big\} \\ & \leftarrow \mathbf{u} \mapsto \mathbf{d} \, \mathbf{\mathfrak{P}} \star \mathbf{d} = \mathbf{v} \cdot \mathbf{d} \, \mathbf{\mathfrak{P}} \star \mathbf{d} = \mathbf{v} \circ \mathbf{\mathfrak{P}}, \end{split}$$

Quantum spin in external fields Spin as an "axion antenna" Classical spin in external fields

Spin as an "axion antenna"

• Particular case: rotating massive body $\Omega^{GEM} = \Omega^{dS} + \Omega^{LT}$ ("de Sitter precession" plus "Lense-Thirring precession"):

$$\mathbf{\Omega}^{\mathrm{dS}} = \frac{(2\gamma+1)}{(\gamma+1)} \, \frac{GM \, \mathbf{r} \times \hat{\mathbf{v}}}{c^2 \, r^3}, \qquad \mathbf{\Omega}^{\mathrm{LT}} = \frac{G}{c^2 \, r^3} \left[\frac{3(\mathbf{J} \cdot \mathbf{r}) \, \mathbf{r}}{r^2} - \mathbf{J} \right]$$

Validity of this result confirmed in Gravity Probe B mission.

- General: "mixing" of axion effects with inertial/gravitational.
- For experiments in accelerators on Earth that rotates ω_⊕, one has Φ = 1 and A = -cv^{rot}/2, with v^{rot} = ω_⊕ × r:

$$\mathcal{H}_{FW}^{\mathrm{ax}} = \frac{\hbar c g_f}{2f_{(a)}} \, \boldsymbol{\sigma} \cdot \left[\boldsymbol{\nabla} \alpha + \frac{\boldsymbol{p}}{mc^2} \, \left(\frac{\partial \alpha}{\partial t} + \boldsymbol{v}^{\mathrm{rot}} \cdot \boldsymbol{\nabla} \alpha \right) \right]$$

This extends flat space results (Silenko, Nikolaev, 2022).

- Expect 10^3 times larger axion wind effect in storage rings.
- "Axion antenna" search planned at NICA, COSY, and PTR.

Quantum spin in external fields Spin as an "axion antenna" Classical spin in external fields

Classical spin in external fields

- Classical theory of spin was developed (Frenkel, Thomas, 1926) soon after spin concept was proposed. This model is used for dynamics of polarized particles in accelerators.
- Neglecting second-order spin effects, dynamical equations

$$\begin{split} \frac{DU^{\alpha}}{d\tau} &= -\frac{q}{m} F^{\alpha}{}_{\beta} U^{\beta}, \\ \frac{DS^{\alpha}}{d\tau} &= -\frac{q}{m} F^{\alpha}{}_{\beta} S^{\beta} + \frac{g_{f}}{f_{(\alpha)}} \eta^{\alpha\beta\gamma\delta} U_{\delta} \left(e^{i}_{\gamma} \partial_{i} \alpha \right) S_{\beta} \\ &\quad -\frac{2}{\hbar} \left[M^{\alpha}{}_{\beta} + \frac{1}{c^{2}} U^{\gamma} \left(U^{\alpha} M_{\beta\gamma} - U_{\beta} M^{\alpha}{}_{\gamma} \right) \right] S^{\beta} \end{split}$$

- U^{α} velocity, S^{α} spin, polarization tensor $M_{\alpha\beta} = \mu' F_{\alpha\beta} + c \delta' \widetilde{F}_{\alpha\beta}$
- Full agreement established between quantum-mechanical theory and classical Frenkel-Thomas-BMT model of spin.
- See also: Balakin-Popov (2015), Dvornikov (2019)

Conclusions and Outlook

- Dynamics of spin in external electromagnetic, gravitational, and axion fields is analyzed in the gravitoelectromagnetism approach in Einstein's general relativity theory.
- Another possible interaction mechanism of axion with particle's spin via EDM Pauli term $\frac{\delta'}{2}\overline{\Psi}\sigma^{\alpha\beta}\Psi\widetilde{F}_{\alpha\beta}$ amounts to shift of EDM parameter $b = b_0 + \kappa_d\alpha/f_{(a)}$, with b_0 for constant EDM, and dimensionless model-dependent factor $\kappa_d \approx 10^{-2}$. This produces an oscillating contribution in the precession angular velocity for the classical axion field $\alpha = \alpha_0 \cos(\omega_{(a)} \mathbf{k}_{(a)} \cdot \mathbf{x})$ in the invisible halo of our Galaxy.
- Deuteron: Karanth et al, *Phys. Rev. X* **13** (2023) 031004
- For details see: YNO, Int. J. Mod. Phys. A (2023) 2342002
 Vergeles, Nikolaev, YNO, Silenko, Teryaev, Phys. Usp. 66 (2023) 109

Introduction

Axion in physics: special case of magnetoelectric effect Spin $\frac{1}{2}$ particle in general relativity Conclusions and Outlook

Thanks !

Yuri N. Obukhov Axion spin dynamics

ヘロト 人間 とくほとくほとう