PHENOMENOLOGY
 OF VECTOR-MESON ELECTROPRODUCTION ON SPINLESS TARGETS
 S.I. Manaenkov
 B.P.Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" DSPIN23
 Dubna, 2023, September 4-8
 Contents

- Introduction
- Kinematics
- Formalism
- Basic Equations
- Solution of Basic Equations
- Comparison of SDME and Amplitude Methods
- Virtual-photon Longitudinal-to-transverse Cross-section Ratio
- Summary

Introduction

- Vector-meson electroproduction provides information on the reaction mechanism and target structure.
- Electroproduction of vector mesons is one of two basic processes for extraction of Generalized Parton Distributions (GPD).
Radyushkin, Ji
- Amplitudes of vector-meson production on nucleons at high Q^{2} and small x_{B} in leading-logarithm approximation are proportional to gluon distributions $G\left(x_{B}, Q^{2}\right)$, $\Delta G\left(x_{B}, Q^{2}\right)$ (Ryskin).
- Usual method of data treatment is Spin-Density-Matrix-Element (SDME) method.
- The alternative and more economical method is amplitude method of data processing when the amplitude ratios are extracted from data..
- Not all helicity amplitudes of vector-meson production can be calculated in theoretical models since the factorization theorem is not proved for all the amplitudes. Therefore individual amplitudes are to be extracted from the data.

Kinematics

- Definition of angles

Φ is angle between production plane (\vec{q}, \vec{v}) and lepton-scattering plane $\left(\vec{k}_{e}, \vec{k}_{e}^{\prime}\right)$.
θ and ϕ are polar and azimuthal angles of π^{+}-momentum in ρ^{0}-meson rest frame

Formalism

- Reactions $e \rightarrow e^{\prime}+\gamma^{*}, \gamma^{*}\left(\lambda_{\gamma}\right)+S \rightarrow V\left(\lambda_{V}\right)+S, V=\rho^{0} \rightarrow \pi^{+}+\pi^{-}$. S is spinless nucleus.
γ^{*} is virtual photon with helicity λ_{γ} in center-of-mass (CM) $\gamma^{*} S$ system.
V denotes produced vector meson with helicity λ_{V} in CM system.
Amplitudes $F_{\lambda_{V} \lambda_{\gamma}}$ in CM system obey relations $F_{-\lambda_{V}-\lambda_{\gamma}}=(-1)^{\lambda_{V}-\lambda_{\gamma}} F_{\lambda_{V} \lambda_{\gamma}}$ due to parity conservation. Independent amplitudes are: $F_{11}, F_{10}, F_{1-1}, F_{01}, F_{00}$.
- The von Neumann Formula
$\mathcal{N} \rho_{\lambda_{V} \tilde{\lambda}_{V}}=\sum_{\lambda_{\gamma}, \tilde{\lambda}_{\gamma}} F_{\lambda_{V} \lambda_{\gamma}} F_{\tilde{\lambda}_{V} \tilde{\lambda}_{\gamma}}^{*} \varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}$
$\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}=\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{U}+P_{b} \varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{L}$
is spin-density matrix of virtual photon $(\operatorname{tr}\{\varrho\}=1)$ known from QED.
$\rho_{\lambda_{V} \tilde{\lambda}_{V}}$ is spin-density matrix of vector meson $(\operatorname{tr}\{\rho\}=1)$.
$\mathcal{N}=\mathcal{N}_{T}+\epsilon \mathcal{N}_{L}$ is normalized factor.
$\mathcal{N}_{T}=\left|F_{11}\right|^{2}+\left|F_{01}\right|^{2}+\left|F_{-11}\right|^{2}$,
$\mathcal{N}_{L}=\left|F_{10}\right|^{2}+\left|F_{00}\right|^{2}+\left|F_{-10}\right|^{2}$,
ϵ is flux ratio of longitudinally polarized $\left(\lambda_{\gamma}=0\right)$ virtual photons to transversely polarized $\left(\lambda_{\gamma}= \pm 1\right)$ photons produced by lepton beam.

Formalism

- Conservation of angular momentum in decay $\rho^{0} \rightarrow \pi^{+}+\pi^{-}$

$$
\left|\rho^{0} ; J=1, J_{z}=\lambda_{V}\right\rangle \rightarrow\left|\pi^{+} \pi^{-} ; L=1, L_{z}=\lambda_{V}\right\rangle \rightarrow Y_{1 \lambda_{V}}(\theta, \phi)
$$

- Angular distribution of decay pions

$$
\mathcal{W}(\Phi, \theta, \phi)=\sum_{\lambda_{V}, \tilde{\lambda}_{V}} Y_{1 \lambda_{V}}(\theta, \phi) Y_{1 \lambda_{V}}^{*}(\theta, \phi) \rho_{\lambda_{V} \tilde{\lambda}_{V}}(\Phi, \epsilon)
$$

- Angular distribution of decay pions for unpolarized beam and spin-dependent distribution for longitudinally polarized lepton beam, P_{b}

$$
\begin{equation*}
\mathcal{W}(\Phi, \theta, \phi)=\mathcal{W}^{U}(\Phi, \theta, \phi)+P_{b} \mathcal{W}^{L}(\Phi, \theta, \phi) \tag{1}
\end{equation*}
$$

Formalism

- Angular distribution of decay pions for unpolarized beam

$$
\begin{array}{r}
\mathcal{W}^{U}(\Phi, \theta, \phi)=\frac{3}{4 \pi}\left[\frac{1}{2}\left(1-r_{00}^{04}\right)+\frac{1}{2}\left(3 r_{00}^{04}-1\right) \cos ^{2} \theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{04}\right\} \sin 2 \theta \cos \phi-\right. \\
-r_{1-1}^{04} \sin ^{2} \theta \cos 2 \phi-\epsilon \cos 2 \Phi\left(r_{11}^{1} \sin ^{2} \theta+r_{00}^{1} \cos ^{2} \theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{1}\right\} \sin 2 \theta \cos \phi-\right. \\
\left.-r_{1-1}^{1} \sin ^{2} \theta \cos 2 \phi\right)-\epsilon \sin 2 \Phi\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{2}\right\} \sin 2 \theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{2}\right\} \sin ^{2} \theta \sin 2 \phi\right)+ \\
+\sqrt{2 \epsilon(1+\epsilon)} \cos \Phi\left(r_{11}^{5} \sin ^{2} \theta+r_{00}^{5} \cos ^{2} \theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{5}\right\} \sin 2 \theta \cos \phi-r_{1-1}^{5} \sin ^{2} \theta \cos 2 \phi\right)+ \\
\left.+\sqrt{2 \epsilon(1+\epsilon)} \sin \Phi\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{6}\right\} \sin 2 \theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{6}\right\} \sin ^{2} \theta \sin 2 \phi\right)\right],
\end{array}
$$

All "unpolarized" Schilling-Wolf SDMEs $r_{\lambda_{V} \tilde{\lambda}_{V}}^{\alpha}$ can be extracted from data.

Formalism

- Angular distribution of decay pions for polarized beam

$$
\begin{array}{r}
\mathcal{W}^{L}(\Phi, \theta, \phi)=\frac{3}{4 \pi}\left[\sqrt{1-\epsilon^{2}}\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{3}\right\} \sin 2 \theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{3}\right\} \sin ^{2} \theta \sin 2 \phi\right)+\right. \\
+\sqrt{2 \epsilon(1-\epsilon)} \cos \Phi\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{7}\right\} \sin 2 \theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{7}\right\} \sin ^{2} \theta \sin 2 \phi\right)+ \\
\left.+\sqrt{2 \epsilon(1-\epsilon)} \sin \Phi\left(r_{11}^{8} \sin ^{2} \theta+r_{00}^{8} \cos ^{2} \theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{8}\right\} \sin 2 \theta \cos \phi-r_{1-1}^{8} \sin ^{2} \theta \cos 2 \phi\right)\right] .
\end{array}
$$

All "polarized" Schilling-Wolf SDMEs can be extracted from data.

Basic Equations

- Schilling-Wolf SDMEs describe vector-meson productions on nucleons

Formulas for SDMEs in terms of helicity amplitudes (K. Schilling, G. Wolf, 1973) $r_{\lambda_{V} \tilde{\lambda}_{V}}^{\alpha}=f_{\lambda_{V} \tilde{\lambda}_{V}}^{\alpha}\left(T_{\lambda_{V} \mu_{N} \lambda_{\gamma} \lambda_{N}}, U_{\lambda_{V} \mu_{N} \lambda_{\gamma} \lambda_{N}}\right)$
where $T_{\lambda_{V} \mu_{N} \lambda_{\gamma} \lambda_{N}}$ are Natural-Parity-Exchange (NPE) amplitude, $U_{\lambda_{V} \mu_{N} \lambda_{\gamma} \lambda_{N}}$ are Unnatural-Parity-Exchange (UPE) amplitude; λ_{N} and μ_{N} are respectively helicities of initial and final nucleon, λ_{γ} is virtual photon helicity, while λ_{V} denoted vector-meson helicity in process
$\gamma^{*}\left(\lambda_{\gamma}\right)+N\left(\lambda_{N}\right) \rightarrow V\left(\lambda_{V}\right)+N\left(\mu_{N}\right)$

- Simplification of algebraic expressions for spinless (S) targets

Reaction $\gamma^{*}\left(\lambda_{\gamma}\right)+S \rightarrow V\left(\lambda_{V}\right)+S$
All UPE-amplitudes become zero.
$\frac{1}{2} \sum_{\lambda_{N}, \mu_{N}}\left\{T_{\lambda_{V} \mu_{N} \lambda_{\gamma} \lambda_{N}} T_{\lambda_{V}^{\prime} \mu_{N} \lambda_{\gamma}^{\prime} \lambda_{N}}^{*}\right\} \rightarrow F_{\lambda_{V} \lambda_{\gamma}} F_{\lambda_{V}^{\prime} \lambda_{\gamma}^{\prime}}^{*}$

- Basic equations
$r_{\lambda_{V} \tilde{\lambda}_{V}}^{\alpha}=f_{\lambda_{V} \tilde{\lambda}_{V}}^{\alpha}\left(F_{\lambda_{V} \lambda_{\gamma}}, U_{\lambda_{V} \mu_{N} \lambda_{\gamma} \lambda_{N}} \equiv 0\right)$
Is it possible to find all helicity amplitudes $F_{\lambda_{V} \lambda_{\gamma}}$ for spinless targets?
Yes!

Solution of Basic Equations

- Property of solutions

Angular distribution normalized to uniry and Schilling-Wolf SDMEs are dimensionless quantities. Therefore they depend on amplitude ratios rather than on amplitudes themselves.

- Ratios of amplitudes to F_{00}. Formulas can be obtained for polarized beam only.

$$
\begin{array}{r}
\frac{F_{11}}{F_{00}}=\epsilon \sqrt{8} \frac{\left(r_{1-1}^{1}-\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}\right)\left(\operatorname{Im}\left\{\mathrm{r}_{10}^{6}\right\}-\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{10}^{7}\right\}\right)}{\left(r_{00}^{04}+r_{00}^{1}\right)\left(\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}-\mathrm{r}_{11}^{1}-\mathrm{r}_{1-1}^{1}+\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{1-1}^{3}\right\}\right)} \\
\frac{F_{01}}{F_{00}}=\frac{\epsilon}{\sqrt{2}} \frac{\left(r_{00}^{5}+i \cdot r_{00}^{8}\right)}{\left(r_{00}^{04}+r_{00}^{1}\right)} \\
\frac{F_{10}}{F_{00}}=-\frac{\operatorname{Im}\left\{\mathrm{r}_{1-1}^{6}\right\}+\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{1-1}^{7}\right\}}{2\left(\operatorname{Im}\left\{\mathrm{r}_{10}^{6}\right\}+\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{10}^{7}\right\}\right)} \\
\frac{F_{1-1}}{F_{00}}=\epsilon \sqrt{8} \frac{\left(r_{11}^{1}-i \cdot \operatorname{Im}\left\{\mathrm{r}_{1-1}^{3}\right\}\right)\left(-\operatorname{Im}\left\{\mathrm{r}_{10}^{6}\right\}+\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{10}^{7}\right\}\right)}{\left(r_{00}^{04}+r_{00}^{1}\right)\left(r_{1-1}^{1}-\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}+\mathrm{r}_{11}^{1}-\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{1-1}^{3}\right\}\right)}
\end{array}
$$

Solution of Basic Equations

- Ratios of helicity amplitudes to F_{11} (limit $\left.Q^{2} \rightarrow 0\right)$

$$
\begin{array}{r}
\frac{F_{00}}{F_{11}}=\frac{1}{\epsilon \sqrt{8}} \frac{\left(r_{00}^{04}+r_{00}^{1}\right)\left(\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}-\mathrm{r}_{11}^{1}-\mathrm{r}_{1-1}^{1}+\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{1-1}^{3}\right\}\right)}{\left(r_{1-1}^{1}-\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}\right)\left(\operatorname{Im}\left\{\mathrm{r}_{10}^{6}\right\}-\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{10}^{7}\right\}\right)} \\
\frac{F_{01}}{F_{11}}=\frac{2\left(\operatorname{Im}\left\{\mathrm{r}_{10}^{2}\right\}-\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{10}^{3}\right\}\right)}{r_{1-1}^{1}-\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}+\mathrm{r}_{11}^{1}+\mathrm{i} \cdot \operatorname{Im}\left\{\mathrm{r}_{1-1}^{3}\right\}} \\
\frac{F_{10}}{F_{11}}=\frac{\operatorname{Im}\left\{\mathrm{r}_{1-1}^{6}\right\}-\mathrm{r}_{1-1}^{5}-\mathrm{i} \cdot\left(\mathrm{r}_{11}^{8}-\operatorname{Im}\left\{\mathrm{r}_{1-1}^{7}\right\}\right)}{\sqrt{2}\left(r_{1-1}^{1}-\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}\right)} \\
\frac{F_{1-1}}{F_{11}}=\frac{r_{11}^{1}-i \cdot \operatorname{Im}\left\{\mathrm{r}_{1-1}^{3}\right\}}{r_{1-1}^{1}-\operatorname{Im}\left\{\mathrm{r}_{1-1}^{2}\right\}}
\end{array}
$$

Comparison of SDME and Amplitude Methods

- SDME method

Properties of Schilling-Wolf SDMEs $r_{\lambda_{V}}^{\alpha} \tilde{\lambda}_{V}$
All SDMEs $r_{\lambda_{V} \tilde{\lambda}_{V}}^{\alpha}$ are considered as independent in a fit of experimental angular distribution. Total number of independent SDMEs is 23.
Since Schilling-Wolf SDMEs can be expressed through 4 complex amplitude ratio, hence they are mutually dependent. There are 15 equations of constraints.
The region for SDME values which guaranties positive definiteness of angular distribution is unknown. If $\mathcal{W} \leq 0$ maximum likelihood method is inapplicable. Likelihood function is linear with respect to $r_{\lambda_{V} \tilde{\lambda}_{V}}^{\alpha}$.

- Amplitude method

The number of real fit functions is 8 (4 real parts and 4 imaginary parts of helicity-amplitude ratios).
Four complex helicity-amplitude ratios are independent.
Angular distribution is positive for any non-zero helicity amplitudes.
Likelihood function is nonlinear with respect to amplitude ratios.

- If Monte-Carlo codes describe detector good enough results of both methods should be in agreement.

Virtual-photon Longitudinal-to-transverse Cross-section Ratio

- Exact formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio for vector-meson productions on spinless targets
$R \equiv \frac{d \sigma_{L}}{d t} / \frac{d \sigma_{T}}{d t} \equiv \frac{\left|F_{10}\right|^{2}+\left|F_{00}\right|^{2}+\left|F_{-10}\right|^{2}}{\left|F_{11}\right|^{2}+\left|F_{01}\right|^{2}+\left|F_{-11}\right|^{2}}=\frac{r_{00}^{04}+r_{00}^{1}+2\left(r_{11}^{1}-r_{1-1}^{04}\right)}{\epsilon\left(2 r_{1-1}^{1}-r_{00}^{1}\right)}$.
Rosenbluth deconposition is not needed to obtain $R\left(\frac{d \sigma}{d t}=\frac{d \sigma_{T}}{d t}+\epsilon \frac{d \sigma_{L}}{d t}\right)$.
- New approximate formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio for scattering from nucleons
$R \approx R_{U}=\frac{r_{00}^{04}+r_{00}^{1}+2\left(r_{11}^{1}-r_{1-1}^{04}\right)}{\epsilon\left\{1-r_{00}^{04}-r_{00}^{1}-2\left(r_{11}^{1}-r_{1-1}^{04}\right)\right\}}$.
Correction to R_{U} are proportional to contributions of UPE-amplitudes only.
Correction does not contain contribution of the largest UPE-amplitude $\left|U_{1 \frac{1}{2} \frac{1}{2}}\right|^{2}$ at $W \sim$ a few GeV .
- Standard approximate formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio for scattering from nucleons $R \approx R_{04}=\frac{r_{00}^{04}}{\epsilon\left\{1-r_{00}^{04}\right\}}$.
$\left|R-R_{U}\right| \ll\left|R-R_{04}\right|$ at high energies since $\left|R-R_{04}\right|$ contains contributions of NPE-amplitudes, which are greater than those of UPE-amplitudes at $W \rightarrow \infty$.

Summary

- Exact formulas for helicity-amplitude ratios in terms of spin-density-matrix elements (SDMEs) of vector mesons produced on spinless targets are obtained. It is shown that single-valued formulas for helicity-amplitude ratios can be obtained only if the beam is longitudinally polarized.
- Making use of the amplitude ratios instead of SDMEs as free fit parameters in maximum likelihood method reduces the number of free real parameters from 23 to 8 .
- A comparison between SDMEs directly extracted from the experimental data and calculated from the helicity-amplitude ratios permits to estimate systematic uncertainties of description with Monte Carlo codes of the applied detector properties.
- Exact formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio, R in terms of SDMEs for vector-meson production on spinless targets is established. There is no need in Rosenbluth decomposition to obtain R.
- A new approximate formula for virtual-photon longitudinal-to-transverse differential-cross-section ratio, R_{U} in terms of SDMEs for vector-meson production on nucleons is proposed. Value of R_{U} is more precise than R_{04} for high energies.

Back-up Slides. Spin-density Matrix of Virtual Photon

- General Formula for Spin-density Matrix of Virtual Photon

$$
\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}=\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{U}+P_{b} \varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{L}
$$

- Spin-density Matrix of Virtual Photon for Unpolarized Beam

$$
\begin{gathered}
\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{U}(\epsilon, \Phi)= \\
=\frac{1}{2}\left(\begin{array}{ccc}
1 & \sqrt{\epsilon(1+\epsilon)} e^{-i \Phi} & -\epsilon e^{-2 i \Phi} \\
\sqrt{\epsilon(1+\epsilon)} e^{i \Phi} & 2 \epsilon & -\sqrt{\epsilon(1+\epsilon)} e^{-i \Phi} \\
-\epsilon e^{2 i \Phi} & -\sqrt{\epsilon(1+\epsilon)} e^{i \Phi} & 1
\end{array}\right),
\end{gathered}
$$

- Additive Term to Spin-density Matrix of Virtual Photon due to Longitudinal Polarization of Beam

$$
\begin{gathered}
\varrho_{\lambda_{\gamma} \tilde{\lambda}_{\gamma}}^{L}(\epsilon, \Phi)= \\
=\frac{\sqrt{1-\epsilon}}{2}\left(\begin{array}{ccc}
\sqrt{1+\epsilon} & \sqrt{\epsilon} e^{-i \Phi} & 0 \\
\sqrt{\epsilon} e^{i \Phi} & 0 & \sqrt{\epsilon} e^{-i \Phi} \\
0 & \sqrt{\epsilon} e^{i \Phi} & -\sqrt{1+\epsilon}
\end{array}\right) .
\end{gathered}
$$

